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Abstract

The latest two-stage optimization framework
based on graph neural network (GNN) and large
neighborhood search (LNS) is the most popu-
lar framework in solving large-scale integer pro-
grams (IPs). However, the framework can not
effectively use the embedding spatial informa-
tion in GNN and still highly relies on large-scale
solvers in LNS, resulting in the scale of IP be-
ing limited by the ability of the current solver
and performance bottlenecks. To handle these is-
sues, this paper presents a GNN&GBDT-guided
fast optimizing framework for large-scale IPs that
only uses a small-scale optimizer to solve large-
scale IPs efficiently. Specifically, the proposed
framework can be divided into three stages: Multi-
task GNN Embedding to generate the embedding
space, GBDT Prediction to effectively use the em-
bedding spatial information, and Neighborhood
Optimization to solve large-scale problems fast
using the small-scale optimizer. Extensive ex-
periments show that the proposed framework can
solve IPs with millions of scales and surpass SCIP
and Gurobi in the specified wall-clock time using
only a small-scale optimizer with 30% of the prob-
lem size. It also shows that the proposed frame-
work can save 99% of running time in achieving
the same solution quality as SCIP, which verifies
the effectiveness and efficiency of the proposed
framework in solving large-scale IPs.
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1. Introduction
Integer programs (IPs) are an essential type of problem that
can model a large number of combinatorial optimization
problems such as routing(Shaw, 1998), network design-
ing(Du & Pardalos, 1998), and bin packing(man Jr et al.,
1996). However, solving real-world large-scale IPs is chal-
lenging because of their NP complexity (Paulus et al., 2020)
and high dimensionality (Martin, 2012). Therefore, how to
obtain a better feasible solution within the limited comput-
ing time has become a research hotspot in this field (Song
et al., 2020a; Ye et al., 2022).

To solve IPs within a limited computing time, scholars have
proposed many efficient methods in the past few decades.
Currently, widely used techniques can be divided into two
categories (Zhang et al., 2023): the exact algorithm based
on branch and bound and the approximate algorithm based
on heuristics.

The representative work of the exact algorithm based on
branch and bound was first proposed by Land in 1960 (Land
& Doig, 1960) as a classic tree search method. By dividing
and conquering, it divides the search space by branching
and cleverly uses the problem’s relaxed boundary to delete
hopeless areas from the tree, which can effectively reduce
the search space and solve the problem of excessive com-
bination space. However, solving an integer program (IP)
may require millions of branching decisions, and one wrong
decision may cause a doubled tree size. To improve the
accuracy of branching, Bénichou first proposed pseudo-cost
branching (Bénichou et al., 1971), which is efficient but
unreliable in the early stage of tree search. Applegate then
suggested strong branching (Applegate et al., 1995), which
is more reliable but time-consuming. In order to combine
the above methods’ advantages, Achterberg proposed hy-
brid branching (Achterberg & Berthold, 2009), flexible use
of pseudo-cost branching and strong branching in differ-
ent branching stages, and has become the most commonly
used branching method for solvers. However, the above
artificially designed branching methods often manifest de-
ficiencies in the face of increasingly complex optimization
problems with large data. Using machine learning tech-
nology to ”learn to branch” is an attractive improvement
direction, including variable selection (Nair et al., 2020),

1



GNN&GBDT-Guided Fast Optimizing Framework for Large-scale Integer Programming

node selection (Song et al., 2020b), and cutting plane selec-
tion (Huang et al., 2022). However, even if machine learning
methods are used to assist in making branching decisions,
the size of the search tree will increase exponentially, and
the solution to the problem will become too complicated,
when faced with large-scale problems.

Therefore, many scholars turn to the approximate algorithm
based on heuristics, whose goal is to combine greedy algo-
rithms and search ones to solve large-scale IPs, including
classical heuristic algorithms and machine learning based
ones. Classical heuristic algorithms have been widely used
to solve IPs since the 1960s. Line Search Methods (Hillier,
1969) and Pivoting Methods (Balas & Martin, 1980) are
the first batches of heuristic algorithms applied to IPs. To
overcome the problem that the early algorithm may not find
a feasible solution for a long time, Fischetti proposed the
feasibility pump (Fischetti et al., 2005) to enhance the abil-
ity to find the initial solution. In order to further improve the
quality of the solution, Rothberg proposed an evolutionary
algorithm (Rothberg, 2007), and Pisinger proposed a large
neighborhood search algorithm (Pisinger & Ropke, 2010),
trying to improve the solution from the perspective of the
population and the individual respectively. However, the
above method has the ”cold-start” problem and does not
use the information obtained from solving the same type of
problems, resulting in wasting resources. Therefore, some
work in recent years aims better to learn the commonality
between problems through machine learning to improve the
original heuristic algorithm, especially the large neighbor-
hood search. The effect of the large neighborhood search
mainly depends on the selection of the initial solution and
the neighborhood. In terms of initial solution selection,
Sonnerat (Sonnerat et al., 2021) introduced neural diving
to obtain a better initial solution. In terms of neighborhood
selection, Song (Song et al., 2020a)trained a neighborhood
selection strategy through imitation learning and reinforce-
ment learning to find a better neighborhood selection. At
present, the latest framework is the two-stage framework
of prediction-and-optimization based on graph neural net-
work(GNN) and large neighborhood search. The general
block diagram is depicted in Figure 1.

Although the two-stage framework in Figure 1 has achieved
good results in many real-world IPs, there exist three short-
comings. Firstly, the GNN-based embedding process shares
the same loss function with the prediction process, leading
to poor properties of the embedding space. Secondly, the
MLP-based prediction process is too simple to fully use
the embedding space, generating less guidance information
for the optimization stage. Finally, the large-neighborhood
search-based optimization stage still searches for optimal
solutions in high-dimensional space, relying on large-scale
algorithms with huge complexity. Generally, the solution
efficiency is poor.

To solve the shortcomings above, this paper proposes
GNN&GBDT-guided fast optimizing framework for large-
scale integer programming problem. The framework is
divided into three stages. The stage of Multi-task GNN Em-
bedding uses the multi-task framework on GNN (Jian et al.,
2022) to make the decision variable embedding instruct the
next stage. The stage of GBDT prediction introduces Gradi-
ent Boosting Decision Tree (GBDT) (Friedman, 2001) so
that while producing prediction results, the loss function
of the leaves and the partition of embedding space by the
decision trees are instructive for the optimization stage. The
stage of Neighborhood Optimization introduces neighbor-
hood search with fixed radius and neighborhood crossover
to solve large-scale problems fast using small-scale solving
algorithms. The framework has been tested in four classic
benchmark IPs and one real-world IP. Using small-scale
algorithms to solve large-scale problems within a specified
time manifests obvious advantages compared with complete
large-scale solvers (e.g., Gurobi, SCIP), which has proved
the effectiveness and efficiency of the proposed framework.

There are three main innovations in this paper.

• First, we introduce the multi-task GNN with half-
convolutions layers and random feat policy into the em-
bedding process. Since decision variable embedding
could be used to instruct the next stage, the proposed
framework can give embedding more good properties.

• Second, we introduce the GBDT into the prediction
process to make it more efficient and can pass the
intermediate information for the optimization stage.

• Third, we propose a Neighborhood Search with a fixed
search radius and small-scale neighborhood crossover
into the optimization stage. Enables solving large-
scale problems fast using small-scale optimizers. The
experiment shows that our method can solve IPs with
millions of scales and surpass Gurobi in the specified
wall-clock time using only a small-scale algorithm with
30% of the problem size.

2. Related Work
2.1. Integer Programs

Integer Programs (IPs) are a type of problem of maximizing
or minimizing a linear expression subject to a number of
linear constraints, where all decision variables are restricted
to take integer values (Williams, 2009). Formally, an integer
program can be defined as the following.

min
x

cTx,

subject toAx ≤ b, l ≤ x ≤ u, x ∈ Zn,
(1)

where n is the number of decision variables, with c, l, u ∈
Rn being their coefficient, lower bound and upper bound.
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Figure 1. The two-stage framework of prediction-and-optimization. The prediction stage adopts a prediction model combining a graph
neural network(GNN) based embedding model and a multi-layer perceptron(MLP) based prediction model. The optimization stage adopts
a large neighborhood search strategy under the guidance of machine learning.

A ∈ Rm×n and b ∈ Rm denote the linear constraints on
x. Any element x ∈ Rn that satisfies all the constraints in
formula (1) is a feasible solution of the IP, and a feasible
solution attaining the minimum objective function value is
called an optimal solution (Schrijver, 1998).

2.2. Bipartite Graph Representation

The Bipartite Graph Representation of IPs was proposed by
Gasse in 2019 (Gasse et al., 2019), which can realize the
lossless encoding of the original IP into a bipartite graph as
the input of the Graph Neural Network, described in Figure
2.
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Figure 2. Transforming an IP instance to a bipartite graph. The
set of n decision variables nodes {x1, . . . , xn} and the set of m
constraint nodes {δ1, . . . , δm} form the left set and right set of
nodes of the bipartite graph.

The left set of n variable nodes in the bipartite graph rep-
resents the decision variables, while the right set of m con-
straint nodes represents the linear constraints. An edge (i, j)
with edge weight aij connecting the left node i and right
node j represents that the i-th decision variable appears in
the j-th constraint, and the coefficient is aij . In the clas-
sic bipartite graph representation application, the feature
selection of nodes and edges usually only depends on the
coefficients in formula (1), such as upper bound l, lower
bounds r, etc.

However, recently some studies have shown that this type of
feature selection strategy may lead to a significant decline in
the embedding ability of GNN in some particular IPs called
”foldable” (Chen et al., 2022). In order to overcome this
shortcoming, the random feat strategy is introduced into the
feature selection of bipartite graph representation, which

can be proved in recent papers’ experiments (Chen et al.,
2022).

2.3. Graph Neural Network

In IPs, a GNN is often used for model learning and neigh-
borhood aggregation after bipartite graph representation.
Formally, let E denote the set of edges in the bipartite graph,
a k layer GNN could be written as below.

hk
v = fk

2 ({h(k−1)
v , fk

1 ({h(k−1)
u : (u, v) ∈ E})}), (2)

where hk
v denotes the hidden state of node v in the k-th layer.

The function fk
1 combines the hidden value of the (k−1)-th

layer of the neighbors to get the aggregation information,
and function fk

2 combines the hidden value of the current
point v and the aggregation information of its neighbors.

But for the graph structure of the bipartite graph, the GNN
with two interleaved half-convolutions layers is the most
popular structure now (Gasse et al., 2019; Yoon, 2022).
Formally, let Vx denote the set of n variable nodes and
Vδ denote the set of m constraint nodes, a k layer half-
convolutions GNN could be written as the following.

hk
δj = fk

δ ({h
(k−1)
δj

,
∑

(xi,δj)∈E

gkδ ({h(k−1)
x , h

(k−1)
δj

})}), δj ∈ Vδ,

hk
xi

= fk
x ({h(k−1)

xi
,

∑
(xi,δj)∈E

gkx({h(k−1)
xi

, hk
δj})}), xi ∈ Vx,

(3)
where hk

x, hk
δ , gkx and gkδ are all MLPs, and the activation

function is ReLU.

2.4. Gradient Boosting Decision Tree

In the prediction stage, optional prediction methods include
MLP, support vector machine, decision tree, etc. This pa-
per chooses the Gradient Boosting Decision Tree (GBDT)
(Friedman, 2001) based on the regression tree.

For a given data set containing n examples and m features
D = {xi, yi} where |D| = n, xi ∈ Rm and yi ∈ R,
GBDT tries to use K regression trees to fit the data set. The
final prediction result of GBDT is the weighted sum of T
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Figure 3. An overview of GNN&GBDT-Guided Fast Optimizing Framework for Large-scale Integer Programming. The blue line indicates
that it is only used during training, while the black line indicates that it is used during both training and testing. In the stage of Multi-task
GNN Embedding, the IP is represented as a bipartite graph, followed by employing a graph partition algorithm(FENNEL) to divide the
bipartite graph into blocks. Then a multi-task GNN with half convolutions is used to learn the embedding of decision variables, where the
loss function is a metric for both optimal solution and graph partition. In the stage of GBDT prediction, the GBDT is used to predict
the optimal value of the decision variable in the IP through the variable embedding. In the stage of Neighborhood Optimization, some
decision variables are fixed as the rounding results of the predicted values of GBDT and a search with fixed radius is used to find an initial
solution. Then, under the guidance of the neighborhood partition, neighborhood search and neighborhood crossover are used iteratively to
improve the current solution.

regression trees-based model prediction.

ŷi = ϕ(xi) =

T∑
t=1

ft(xi), (4)

To fit the data set, GBDT uses the additive manner to mini-
mize the following objective function. Formally, let ŷi(t−1)

be the sum of predictions of t − 1 regression trees for the
i-th instance, the objective of the t-th regression tree can be
written as the following.

L(t) =

n∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)), (5)

where l is an arbitrary metric function to represent the dis-
tance between the prediction result of GBDT and the target
yi. Applying second-order Taylor expansion approximation
to formula (5) and defining Ij = {i|q(xi) = j} to be an
instance in leaf j, the optimal weight w∗

j of leaf j can finally
be written as the following.

w∗
j = −

∑
i∈Ij

gi∑
i∈Ij

hi
, (6)

where gi = ∂ŷ(t−1)l(yi, ŷ
(t−1)) and hi =

∂2
ŷ(t−1)

l(yi, ŷ
(t−1)) are first-order and second-order

gradient statistics of function l. The optimal value of the
objective function can be also written as the following.

L
(t)

= −1

2

T∑
j=1

(
∑

i∈Ij
gi)

2∑
i∈Ij

hi
. (7)

For the structure of the t−th regression tree, GBDT greedily
adds branches from the root. Assuming IL and IR are the
instance sets of left and right nodes after branching, let
I = IL ∪ IR, the objective of the branching is to maximize
the loss reduction after branching.

Lsplit =
1

2
[
(
∑

i∈IL
gi)

2∑
i∈IL

hi
+

(
∑

i∈IE
gi)

2∑
i∈IR

hi
−

(
∑

i∈I gi)
2∑

i∈I hi
].

(8)

3. Method
The proposed GNN&GBDT-Guided Fast Optimizing Frame-
work for Large-scale Integer Programming is divided into
three stages: Multi-task GNN Embedding, GBDT predic-
tion, and Neighborhood Optimization, which is illustrated
in Figure 3.

3.1. Multi-task GNN Embedding

Given an IP to be solved, it would be represented as a
bipartite graph. Then a graph partition algorithm is used to
divide the bipartite graph into blocks. Further, a multi-task
GNN with half convolutions is used to learn the embedding
of decision variables, where the loss function is a metric
for both optimal solution and graph partitions. Based on
the above steps, we obtain the neural feature embedding of
decision variables for the next stage.

Bipartite Graph Representation. On the basis of classic
bipartite graph representation introduced in (Sec. 2.2), a
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new random feat-based (Chen et al., 2022) feature selection
method is introduced to achieve better representation and
embedding capabilities in GNN. Formally, let hi

x, h
i
δ, h(i,j)

denotes the feature selection of the i-th variable node, j-th
constraint node and edge (i, j).

hi
x = (ci, li, ui, ξ),

hj
δ = (bj , oj , ξ),

h(i,j) = (aij),

(9)

where ci, ki, ui denotes the coefficient, lower bound and
upper bound of the i-th decision variable, bj , oj denotes
the value and symbol of the j-th constraint, aij denotes the
weight of edge (i, j) and ξ ∼ U(0, 1) denotes the uniform
random feat between 0 and 1.

Graph Partition Algorithm. In order to partition the de-
cision variables according to the correlation, the decision
variables that appear in multiple constraints together should
be as close as possible. So the FENNEL-based (Tsourakakis
et al., 2014) graph partition algorithm is used for the bipar-
tite graph representation G = (V, E) of the IP. The graph
partition algorithm will summarize the decision variables
with dense edges or high correlation into one block, while
dividing the decision variables with sparse edges or low
correlation into separate blocks. The result of the graph
partition is transferred to GNN as a training label. FENNEL
is a stream algorithm, which means that it checks each node
v in the graph one by one and calculates δg(v,Pi) with each
block Pi. The calculation method is as follows.

δg(v,Pi)← |Pi ∩N(v)| − αγ|Pi|γ−1, (10)

where N(v) denotes the neighbor node set of v, α, γ are
preset parameters related to block balancing and minimum
cut. The details of the graph partitioning algorithm based
on FENNEL are shown in Appendix.

Multi-task GNN. On the based GNN with half convolu-
tions (Gasse et al., 2019; Yoon, 2022) introduced in (Sec.
2.3), the multi-task strategy is used for embedding space
learning of GNN. The multi-task GNN can not only make
the embedding of variables with the same optimal solution
value as close as possible but also make the embedding
of variables that appear in multiple constraints together as
close as possible.

These two tasks are essential to make the points of the same
label as close as possible while the points of different labels
as far as possible in the embedding space. To achieve it,
metric learning (Kulis et al., 2013) is used to re-learn the
distance relationship between variable embeddings. For-
mally, for the training data X = {h0

xi
,Gi,Opti}Ni=1, where

Gi represents the graph partition result and Opti denotes
the optimal solution of the decision variables, ProxyAn-
chorLoss (Kim et al., 2020) is used to be the loss function.

Following the method of ProxyAnchorLoss, proxy set will
be assigned for each class, which is initialized with a normal
distribution to ensure they are uniformly distributed on the
unit hypersphere, effectively representing a class’s centroid.
Setting the proxy sets of G and Opt as G and O respectively,
the two tasks’ loss functions can be written as follows.

loss1(X) =
1

|G+|
∑

f∈G+

log(1 +
∑

x∈X+
G

e−α(s(x,f)−δ))

+
1

|G|
∑
f∈G

log(1 +
∑

x∈X−
G

eα(s(x,f)+δ)),

(11)

loss2(X) =
1

|O+|
∑

f∈O+

log(1 +
∑

x∈X+
O

e−α(s(x,f)−δ))

+
1

|O|
∑
f∈O

log(1 +
∑

x∈X−
O

eα(s(x,f)+δ)),

(12)

where δ > 0 denotes the margin, α > 0 denotes the scaling
factor, s(., .) represents the cosine similarity between two
vectors, G+ and O+ are the sets of positive proxies. The
final objective can be formulated as the following (Jian et al.,
2022).

L = βloss1 + (1− β)loss2, (13)

where β ∈ [0, 1] is the hyper-parameter to control the bal-
ance.

3.2. GBDT prediction

After getting the embedding of decision variables from the
previous stage, the GBDT (Friedman, 2001) introduced in
(Sec. 2.4) is used to predict the optimal value of the decision
variables in the IP through the variable embeddings, and
generating the guidance for the initial solution search and
neighborhood partition in the next stage.

Variable Value Prediction. In the decision variables pre-
dicting problem, the GBDT is used to predict the opti-
mal value of the decision variables. A training data set
D = {hK

xi
,Opti}Ni=1 is used to construct GBDT. The trained

GBDT can predict the variable’s value in the optimal solu-
tion through the weighted accumulation of the prediction
results of each regression tree that can be rewritten as fol-
lows according to formula (4).

ŷi = ϕ(hK
xi
) =

T∑
t=1

ft(h
K
xi
), (14)

And the prediction loss and embedding space partition of
each regression tree will be used to guide the initial solution
search and neighborhood partition in the next stage.

Guidance Generation. Two kinds of guidance information
can be used to guide the optimization work in the next stage.
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On one hand, because the essence of regression tree-based
GBDT prediction is to partition the embedding space, the
partition result will be used to guide the neighborhood parti-
tion. Multiple decision trees are used to ensure that GBDT
can have good performance, each with its weight. In the
process of neighborhood partition in each round, a decision
tree is randomly selected based on its weight as the partition
criterion for this round, using its partition result to guide
the neighborhood partition. The larger the weight of the
decision tree, the more likely it is to be selected. This way,
it uses decision tree partitioning as the neighborhood par-
titioning criterion and retains some randomness to prevent
getting stuck in local optima.

On the other hand, when the loss function of GBDT is de-
fined as the squared error, the value of the loss function
essentially represents the square of the physical distance.
In this case, for multiple decision variables of a training
instance, the sum of the loss function can measure the dis-
tance to the optimal solution and has physical significance.
Therefore, the weighted accumulation of each regression
tree’s prediction loss will guide which decision variables
will be fixed in the initial solution search. Formally, let
Ij = I1, . . . , IT represent the leaf nodes in the T regression
trees that constitute the prediction results of the decision
variable xj . According to formula (7), the weighted accu-
mulation of the prediction loss can be written as follow.

Pj =

T∑
t=1

βtL
(t)

it =

T∑
t=1

−1

2
βt

(
∑

i∈It
gi)

2∑
i∈It

hi
(15)

3.3. Neighborhood Optimization

In the stage of neighborhood optimization, for solving a
large-scale IP with n decision variables, a variable propor-
tion α ∈ (0, 1) needs to be defined first, which means that an
optimizer that can solve a small-scale IP with αn decision
variables can be used to solve the corresponding large-scale
IP. In order to realize this stage, a search with a fixed radius
is used to search an initial solution first. Then under the
guidance of neighborhood partition, neighborhood search
and neighborhood crossover are used iteratively to improve
the current solution. Finally, when the predetermined time
is reached, the current solution is output as the optimization
result.

Initial Solution Search. Given the predicted value ŷi and
the prediction loss Pi of each decision variable, the decision
variables are sorted according to the prediction loss from
small to large. After that, the first (1−α)n decision variables
are fixed, while the remaining variables are searched with a
fixed radius. The details are shown in Algorithm 1.

In Algorithm 1, η ∈ (0, 1) is a reduction coefficient used to
expand the fixed proportion, REPAIR () is a function used

Algorithm 1 Initial Solution Search
Input: The number of decision variables n, predicted
value ŷ, prediction loss P , variable proportion α
Init: Initial Solution X = {}
X ← ŷ
Sort the decision variables in ascending order of P
αset = α
repeat
F ← The first (1− αset)n decision variables ▷Fixed
U ← The last αset decision variables ▷Unfixed
F ′,U ′ ← REPAIR(F ,U ,X )
if |U ′| > αn then
αset = η ∗ αset

end if
until |U ′| ≤ αn
X ← SEARCH(F ′,U ′,X )
Return: X

to cancel the fixation of illegal variables that will be shown
in Appendix, SEARCH () is a search with a fixed radius
that needs to use the small-scale optimizer. The formal
expression of the search with a fixed radius is as follows.

min
x∈Unfixed

cTx

subject toAx ≤ b, l ≤ x ≤ u, x ∈ Zn,

xi = x̂i,∀xi ∈ Fixed,

(16)

where x̂i denotes the value in current solution of the i-th
decision variable.

Neighborhood Partition. Every iteration of neighborhood
search and neighborhood crossover requires a new neigh-
borhood partition. Since the embedding of variables with a
strong correlation are close, the embedding space partition
result of the regression tree in GBDT is directly used as
the neighborhood partition. Figure 4 is an example of the
neighborhood partition.

Regression Tree Neighborhood Partition

Figure 4. Using the partition result of the regression tree as the
neighborhood partition. Different branches on the left regression
tree correspond to the partitions of the right embedding space.

Neighborhood Search. Based on the neighborhood parti-
tion results, the current solution is used to explore neighbor-
hoods in parallel. Specifically, for the i-th neighborhood Ni,
the details in neighborhood search are shown in Algorithm
2.
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Algorithm 2 Neighborhood Search
Input: The set of decision variables X , the number of
decision variables n, predicted value ŷ, prediction loss
P , variable proportion α, neighborhood Nnow, current
solution X
Init: Neighborhood search solution X ′ = {}
Sort the decision variables in Nnow in descending order
of Pi ∗ |ϕi − ŷi|
N ← The first αn decision variables in Nnow

F ← {x∥x ∈ X∧x /∈ N} ▷Fixed
U ← {x∥x ∈ X∧x ∈ N} ▷Unfixed
X ′ ← SEARCH(F ,U ,X )
Return: X ′

In Algorithm 2, in order to keep the neighborhood within
the search range of the optimizer, a new evaluation index
is proposed as shown below to select the decision variables
that are most likely to modify the value.

Qi = Pi ∗ |Xi − ŷi|, (17)

where Pi, Xi and ŷi denotes the prediction loss, the value in
current solution and the predicted value of the i-th decision
variable respectively. Here Qi is used to assess the confi-
dence level of each decision variable’s current solution, i.e.,
the largerQi, the lower the confidence level of that decision
variable, and the more likely it is to be set as an unfixed
decision variable to be optimized.

Neighborhood Crossover Since the size of the neighbor-
hood is limited to no more than αn, it is easy to fall into
the local optima because the radius of the neighborhood
search is too small. So neighborhood crossover is crucial.
Based on the result of neighborhood partition, neighborhood
crossover is carried out step by step, as shown in Figure 5.

Regression Tree Neighborhood Crossover

Figure 5. Carrying out neighborhood crossover step by step. First,
the neighborhood partition corresponding to the second layer
of branching of the regression tree is crossed by neighborhood
crossover. Then the crossover over the neighborhood partition cor-
responding to the first layer of branching is similar to the second
layer.

For the two neighborhoods N1, N2 to be crossed, the details
are shown in Algorithm 3.

Algorithm 3 Neighborhood Crossover
Input: The set of decision variables X , the number of de-
cision variables n, neighborhood N1, N2, neighborhood
search solution X ′

1,X ′
2

Init: Neighborhood crossover solution X = {}
X ′′ ← {}
for i = 1 to n do

if The i-th decision variables in N1 then
X ′′[i]← X ′

1[i]
else
X ′′[i]← X ′

2[i]
end if

end for
F ← X ▷Fixed
U ← ∅ ▷Unfixed
F ′,U ′ ← REPAIR(F ,U ,X ′′)
if |U ′| ≤ αn then

X← SEARCH(F ′,U ′,X ′′)
end if
Return: X

4. Experiments
Experiments are performed on one real-world large-scale
IP in the internet domain and four widely used NP-hard
benchmark IPs: Combinatorial Auction (CA) (De Vries
& Vohra, 2003), Maximum Independent Set (MIS) (Tarjan
& Trojanowski, 1977), Minimum Vertex Covering (MVC)
(Dinur & Safra, 2005) and Set Covering (SC) (Caprara et al.,
2000). The detailed dataset and environment introduction
are shown in Appendix. The state-of-the-art IP solvers SCIP
(Achterberg, 2009) and Gurobi (Achterberg, 2019) are used
as the baseline, and their scale-constrained versions are used
as the small-scale optimizer for neighborhood optimization.

In order to show the benefits of the proposed GNN&GBDT-
Guided Fast Optimizing Framework for Large-scale Inte-
ger Programming, a comprehensive computational study
is carried out as follows. First of all, we compare the op-
timization results between the proposed framework and
baseline in the same wall-clock time (Sec. 4.1). More-
over, we compare the running time of the proposed frame-
work with the baseline under the same optimization re-
sult (Sec. 4.2). All experiments are repeated five times
and the metric average is recorded. Finally, we analyze
the convergence performance of the proposed framework
(Sec. 4.3). Code for reproducing all the experiments can
be found at https://github.com/thuiar/GNN-GBDT-Guided-
Fast-Optimizing-Framework.

4.1. Comparison of Objective Value

In order to verify the ability of the proposed framework
to solve different types of large-scale IPs, this paper has
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Table 1. Comparison of objective value results with SCIP and Gurobi under the same running time on different benchmark IPs. Ours-20%S
means the scale-limited versions of SCIP which limit the variable proportion α to 20%. Ours-20%G means the scale-limited versions of
Gurobi which limit the variable proportion α to 20%. ↑ means the result is better than the baseline. - means that no feasible solution is
found.

IP1 IP2 CA2 CA3 MIS2 MIS3 MVC2 MVC3 SC2 SC3

SCIP - 901099.8 11235.7 115277.7 18552.6 9086.6 31180.4 491444.9 - 272189.6
Ours-20%S 232179.9↑ 924740.0↑ 13160.4↑ 131994.1↑ 21865.5↑ 220045.8↑ 27776.3↑ 282199.6↑ 17870.6↑ 291778.9
Ours-30%S 232594.6↑ 940877.9↑ 13663.6↑ 137110.9↑ 22294.2↑ 223342.0↑ 27419.6↑ 276258.6↑ 17174.8↑ 225681.4↑
Ours-50%S 232967.7↑ 901099.8↑ 14017.6↑ 139939.4↑ 22728.4↑ 228148.4↑ 27015.7↑ 272189.6↑ 16724.7↑ 244132.8↑

Gurobi 226336.4 907252.1 12944.4 130008.6 21780.3 216565.9 28088.8 283904.9 17953.6 320305.7
Ours-20%G 232254.7↑ 933815.5↑ 12788.9 131466.9↑ 21867.6↑ 215494.4 28021.6↑ 287434.6 17415.7↑ 231356.8↑
Ours-30%G 232700.6↑ 943328.7↑ 13426.8↑ 134685.9↑ 22158.4↑ 218109.7↑ 27737.4↑ 280458.9↑ 17052.6↑ 229642.5↑
Ours-50%G 241030.8↑ 951097.3↑ 12466.0↑ 138835.0↑ 22626.7↑ 225088.5↑ 27215.6↑ 275596.0↑ 16882.7↑ 219448.8↑

Time 60s 3000s 2000s 30000s 2000s 8000s 2000s 8000s 2000s 12000s

Table 2. Comparsion of running time with SCIP and Gurobi under the same optimization solution results on different benchmark IPs.Ours-
20%S means the scale-limited versions of SCIP which limit the variable proportion α to 20%. Ours-20%G means the scale-limited
versions of Gurobi which limit the variable proportion α to 20%. >20000s indicates the inability to achieve the target objective function
within the 20000s.

IP1 IP2 CA2 CA3 MIS2 MIS3 MVC2 MVC3 SC2 SC3

SCIP 65.0s 3149.6s >20000s >60000s >20000s >60000s >20000s >60000s >20000s 7332.0s
Ours-20%S 131.4s 3456.4s >20000s >60000s >20000s >60000s >20000s >60000s >20000s 25010.2s
Ours-30%S 49.7s 2152.2s 1925.8s 29973.1s 969.8S 7594.7s 1045.3s 7749.4s 2345.0s 3942.2s
Ours-50%S 44.2s 3444.2s 211.4s 26645.6s 81.2s 5983.4s 33.3s 10485.0s 250.8s 459.2s

Target 232594.6 940877.9 13663.6 137110.9 22294.2 223342.0 27419.6 276258.6 17174.8 225681.4
Gurobi 67.1s >6000s >20000s >60000s >20000s >60000s >20000s >60000s 15213.0s >60000s

Ours-20%G 99.1s >6000s >20000s >60000s >20000s 28373.9s >20000s >60000s 10915.3s 26052.8s
Ours-30%G 50.2s 1371.8s 2900.5s 29360.4s 1121.8s 5817.4s 1183.0s 7905.7s 3814.1s 11362.7s
Ours-50%G 39.1s 1912.6s >20000s 28242.4s 389.9s 6542.5s 383.1s 4087.4s 1134.8s 2329.3s

Target 232700.6 943328.7 13426.8 134685.9 22158.4 218109.7 27737.4 280458.9 17052.6 229642.5

carried out a comparative experiment between the proposed
framework with different proportions α and the large-scale
baseline solver SCIP and Gurobi in the same wall-clock
time. The experimental results are shown in Table 1. This
paper compares scale-limited versions of SCIP and Gurobi
which limit the variable proportion α to 20%, 30% and 50%
to compare with the large-scale version. Generally, when
the small-scale optimizer limits the variable proportion α =
20%, the optimization result of the proposed framework
has almost exceeded the large-scale version of the baseline
in the same wall-clock time. Moreover, when the small-
scale optimizer limits the variable proportion α = 30%, the
proposed framework is far ultra the large-scale version of
the baseline on all benchmark IPs.

Based on the above experimental results, the proposed
framework can use a small-scale optimizer to achieve good
results on large-scale IPs. In addition, through experimental
comparison, this paper also found some interesting conclu-
sions. On one hand, not all experiments get the best results
when proportion α = 50% which is speculated that the
final result should be similar to a unimodal function with
the change of the proportion α. On the other hand, even
though SCIP is significantly inferior to Gurobi in solving
large-scale IPs, SCIP as a small-scale solver in the proposed
framework can surpass Gurobi in most problems, which
is speculated that SCIP has better optimization ability in
small-scale problems that closes to the original intention
of using small-scale solvers to solve large-scale IPs in the

proposed framework.

4.2. Comparison of Running Time

In order to further explore the optimization solution capa-
bility of the proposed framework, this paper also compares
the running time with the baseline solvers SCIP and Gurobi
under the same optimization solution results, and the re-
sults are summarized in Table 2. This paper compares scale-
limited versions of SCIP and Gurobi which limit the variable
proportion α to 20%, 30% and 50% to compare with the
large-scale version of the baseline. As shown in the table,
under the same optimization results, the proposed frame-
work still significantly reduces the running time compared
with the baseline solver in all IPs.

It is worth noting that in the MIS2 and MVC2, although
the optimization results of the proposed framework and
the baseline solver in Table 1 are not much different, the
time spent by the SCIP is more than 200 times that of the
proposed framework while the time spent by the Gurobi is
more than 50 times that of the proposed framework under
the same optimization results.

4.3. Convergence Performance Analysis

Convergence is a very important attribute in the optimization
solution framework. It can often be measured by using
the figure of objective value progressions of variants. In
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order to deeply analyze the convergence performance of
the proposed framework in solving large-scale IPs, this
paper compares the statistics of convergence in the process
of solving large-scale optimization problems with SCIP
under different variable proportion α in IPs which is in
Figure 6. It can be seen from the figure that the proposed
framework combined with the small-scale optimizer has
good convergence performance when solving large-scale IP,
on the premise of obtaining high-quality solutions.
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Figure 6. Time-objective figure for benchmark IPs. (a) is CAT. (b)
is MIS. (c) is MVC. (d) is SC where no feasible solution is found
in SCIP.

5. Conclusion
This paper proposes a GNN&GBDT-based fast optimiz-
ing framework for solving large-scale IPs. By using multi-
task GNN with half-convolutions layers and the GBDT,
our framework can effectively use the embedding spatial
information and generate intermediate information for the
optimization stage. On top of it, by using a neighborhood
search with a fixed search radius and small-scale neighbor-
hood crossover, our framework can just use a small-scale
optimizer to solve large-scale IPs efficiently. Experiments
show that our framework can solve large-scale IPs and sur-
pass SCIP and Gurobi in the specified wall-clock time using
only a small-scale optimizer with 30% of the problem size,
and can only use one percent of the time to achieve the same
solution quality as SCIP. However, the proposed framework
is currently tailored for efficient solving of IPs. In the future,
we will continue optimizing the proposed framework and
try to make breakthroughs in the aspects of ultra-large-scale,
multi-objective and mixed integer.
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A. Calculation Process Of GBDT
For a given data set containing n examples and m features D = {xi, yi} where |D| = n, xi ∈ Rm and yi ∈ R, GBDT
tries to use K regression trees to fit the data set. The final prediction result of GBDT is the weighted sum of K regression
trees-based model prediction.

ŷi = ϕ(xi) =

K∑
k=1

fk(xi), (18)

where fk(xi) denots the prediction of the k-th regression tree. To fit the data set, GBDT minimizes the following objective
function.

L(ϕ) =
n∑

i=1

l(ŷi, yi), (19)

where l is an arbitrary metric function to represent the distance between the prediction of GBDT ŷi and the target yi. GBDT
uses the additive manner to minimize fumula (5). Formally, let ŷi(t−1) be the sum of predictions of t− 1 regression trees for
the i-th instance, the objective of the t-th regression tree can be written as the following.

L(t) =
n∑

i=1

l(yi, ŷ
(t−1)
i + ft(xi)). (20)

Applying second-order Taylor expansion approximation to formula (20), it can obtain the following.

L(t) ≈
n∑

i=1

[l(yi, ŷ
(t−1)) + gifi(xi) +

1

2
hif

2
t (xi)], (21)

where gi = ∂ŷ(t−1)l(yi, ŷ
(t−1)) and hi = ∂2

ŷ(t−1)
l(yi, ŷ

(t−1)) are first-order and second-order gradient statistics of function
l.

It can remove the constant term to obtain the following simplification objective of the t-th regression tree.

L
(t)

=

n∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)]. (22)

Defining Ij = {i|q(xi) = j} to be an instance in leaf j, it can rewrite formula (22) as the following.

L
(t)

=

T∑
j=1

[(
∑
i∈Ij

gi)wj +
1

2
((
∑
i∈Ij

hi)w
2
j ]. (23)

Therefore, corresponding to the fixed regression tree structure, we can calculate the optimal weight w∗
j of leaf j.

w∗
j = −

∑
i∈Ij

gi∑
i∈Ij

hi
, (24)

and can calculate the optimal value of the objective function.

L
(t)

= −1

2

T∑
j=1

(
∑

i∈Ij
gi)

2∑
i∈Ij

hi
. (25)

For the structure of the regression tree, GBDT greedily adds branches from the root. Assuming IL and IR are the instance
sets of left and right nodes after branching, let I = IL ∪ IR, the objective of the branching is to maximize the loss reduction
after branching.

Lsplit =
1

2
[
(
∑

i∈IL
gi)

2∑
i∈IL

hi
+

(
∑

i∈IE
gi)

2∑
i∈IR

hi
−

(
∑

i∈I gi)
2∑

i∈I hi
]. (26)
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B. FENNEL Graph Partition Algorithm
For million-level graphs, the streaming graph partitioning algorithm will be used generally. There are two types of heuristics
for streaming graph partitioning. On one hand, place the newly arrived vertex in the cluster with the largest number of
neighbors. On the other hand, place the newly arrived vertex in the cluster with the least number of non-neighbors. FENNEL
then proposed a new solution to combine the two heuristics.

Formally, for the graph G = (V, E) with n vertexes and m edges to be partitioned into k blocks, FENNEL will summarize
the vertexes with dense edges into one block, while dividing the vertexes with sparse edges into separate blocks. Specifically.
it checks each newly arrived verte v in the graph one by one and calculates δg(v,Pi) with each block Pi which satisfies
|Pi| < ν n

k as the following.
δg(v,Pi)← |Pi ∩N(v)| − αγ|Pi|γ−1, (27)

where N(v) denotes the neighbor node set of v, ν, γ are preset parameters related to block balancing and minimum cut, and
α =
√
k m
n3/2 denotes the balance of two types of heuristics. The details are shown in Algorithm 4.

Algorithm 4 FENNEL-based Graph Partition Algorithm
Input: The number of blocks k, graph G = (V, E), parameters µ, γ
Init: Label F = {}, block P = {{}, . . . , {}}
n← |V|
m← |E|
α←

√
k m
n3/2

load limit← ν n
k

for v = 1 to n do
for i = 1 to k do

if |Pi| < load limit then
N(v)← {u, (u, v) ∈ E}
δg(v,Pi)← |Pi ∩N(v)| − αγ|Pi|γ−1

end if
end for
ind← argmaxiδg(v,Pi)
Add v into Pi

F [v]← ind
end for
Return: F

C. REPAIR Algorithm
The search with a fixed radius for IP is widely used in the proposed framework to improve the current solution, which can
be written as the following.

min
x/∈F

cTx

subject toAx ≤ b, l ≤ x ≤ u, x ∈ Zn,

xi = x̂i,∀xi ∈ F ,

(28)

where x̂i denotes the value in the current solution of the i-th decision variable and F denotes the set of decision variables
that are fixed as the value in the current solution. However, the IP corresponding to formula (28) may be infeasible, leading
to the current solution’s failure. Therefore, a REPAIR Algorithm is proposed to check and repair the constraints that are
doomed to be infeasible by canceling the fixation of some illegal variables corresponding to the infeasible constraints.

Specifically, for a given IP and a set of fixed variables F , the REPAIR algorithm sequentially traverses every constraint in
the IP. For a constraint, the algorithm will calculate whether the constraint is doomed to be infeasible through the upper and
lower bounds of unfixed variables. If this constraint is doomed to be infeasible, the algorithm will cancel the fixation of
some decision variables in the constraint and try to make this constraint feasible again. The details are shown in Algorithm
5.
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Algorithm 5 REPAIR Algorithm
Input: The set of fixed variables F , the set of unfixed variables U , the current solution X
{A, b, l, u} ← The coefficient of the given IP
n← the number of decision variables
m← the number of constrains
for i = 1 to m do
N ← 0
for j = 1 to n do

if The j-th decision variable ∈ F then
N ← N + Xj ∗Ai,j

else
if Aij > 0 then
N ← N + lj ∗Ai,j

end if
if Aij < 0 then
N ← N + uj ∗Ai,j

end if
end if

end for
if N > bi then

for j = 1 to n do
if The j-th decision variable ∈ F then

Remove the j-th decision variable from F
Append the j-th decision variable into U
N ← N −Xj ∗Ai,j

if Aij > 0 then
N ← N + lj ∗Ai,j

end if
if Aij < 0 then
N ← N + uj ∗Ai,j

end if
if N ≤ bi then

BREAK
end if

end if
end for

end if
end for
Return: F ,U

D. Experiments Details
D.1. Experimental Setting

All experiments are run on a machine with two Intel Xeon Platinum 8375C @ 2.90GHz CPU and four NVIDIA TESLA
V100(32G) GPU. The decision variables and constraint scale of the one real-world large-scale IP in the internet domain and
four widely used NP-hard benchmark IPs are shown in Table 3.

In addition, on all IPs, we set that the running time of a round of the search with fixed radius cannot exceed 20% of the total
time. In particular, for the CA problem, due to the huge search space of the initial solution, it is easy to exceed the memory
limit of the experimental machine. In the experiments with proportion α = 50%, our initial solution is still carried out using
proportion α = 30% of the weakened version. Theoretically, machines with larger memory will get better results.
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Table 3. The size of one real-world large-scale IP in the internet domain and four widely used NP-hard benchmark IPs. IP denotes the
real-world large-scale IP. CA denotes the Combinatorial Auction problem. MIS denotes the Maximum Independent Set problem. MVC
denotes the Minimum Vertex Covering problem. SC denots the Set Covering problem.

Problem Scale Number of
Variables

Number of
Constraints

Read-world IP
(Maximize)

IP1 500000 25000
IP2 1920000 100003

CA
(Maximize)

CA1 10000 10000
CA2 100000 100000
CA3 1000000 1000000

MIS
(Maximize)

MIS1 10000 30000
MIS2 100000 300000
MIS3 1000000 3000000

MVC
(Minimize)

MVC1 10000 30000
MVC2 100000 300000
MVC3 1000000 3000000

SC
(Maximize)

SC1 20000 20000
SC2 200000 200000
SC3 2000000 2000000

D.2. Baseline

In this paper, the state-of-the-art IP solvers SCIP and Gurobi(10.0) are used as the baseline, and their scale-constrained
versions are used as the small-scale optimizer for neighborhood optimization. For the latest two-stage optimization framework
based on graph neural network (GNN) and large neighborhood search (LNS) in https://github.com/deepmind/neural lns, its
code is not fully open source. So we did not include it in the baseline in this paper.

D.3. Dataset

For the four widely used NP-hard benchmark IPs, the existing data set cannot meet such large-scale data requirements, so
we use data generators to generate training and test data sets. Specifically, for the Maximum Independent Set problem (MIS)
or Minimum Vertex Covering problem (MVC) with n decision variables and m constraints, we generate a random graph
with n nodes and m edges to correspond to an IP problem that meets the scale requirements. For the Combinatorial Auction
problem (CA) with n decision variables and m constraints, we generate a random problem with n items and m bids where
each bid includes 5 items. For the Set Covering problem (SC) with n decision variables and m constraints, we generate a
random problem with n items and m sets where each set bid includes 4 items. For the optimal solution in the training data
set, we use Gurobi to run for 8 hours to find the approximate optimal solution.

E. Additional Experiments
In order to verify the ability of the proposed framework to solve small-scale IPs, this paper has carried out an additional
comparative experiment between the proposed framework with different proportions α and the large-scale baseline solver
SCIP and Gurobi in the same wall-clock time. The experimental results are shown in Table 4. To further explore the
optimization solution capability of the proposed framework in small-scale IPs, this paper also compares the running time
with the baseline solvers SCIP and Gurobi under the same optimization solution results, and the results are summarized in
Table 5.

The experimental results show that the proposed framework can still surpass the baseline in small-scale problems and has
good generalization.
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Table 4. Comparison of objective value results with SCIP and Gurobi under the same running time on small-scale benchmark IPs.
Ours-20%S means the scale-limited versions of SCIP which limit the variable proportion α to 20%. Ours-20%G means the scale-limited
versions of Gurobi which limit the variable proportion α to 20%. ↑ means the result is better than the baseline. - means that no feasible
solution is found.

CA1 MIS1 MVC1 SC1

SCIP 1107.4 1857.3 3125.7 -
Ours-20%S 1283.3↑ 2180.5↑ 2833.6↑ 1800.9↑
Ours-30%S 1336.5↑ 2208.7↑ 2792.2↑ 1771.7↑
Ours-50%S 1367.8↑ 2264.6↑ 2722.1↑ 1680.8↑

Gurobi 1286.3 2196.3 2792.6 1818.2
Ours-20%G 1177.7 2188.2 2827.8 1787.5↑
Ours-30%G 1274.7 2218.4↑ 2759.5↑ 1713.2↑
Ours-50%G 1302.8↑ 2266.7↑ 2714.0↑ 1669.0↑

Time 60s 40s 30s 60s

Table 5. Comparsion of running time with SCIP and Gurobi under the same optimization solution results on small-scale benchmark IPs.
Ours-20%S means the scale-limited versions of SCIP which limit the variable proportion α to 20%. Ours-20%G means the scale-limited
versions of Gurobi which limit the variable proportion α to 20%.

CA1 MIS1 MVC1 SC1

SCIP >600s >400s >300s 600.0s
Ours-20%S >600s >400s >300s 72.9s
Ours-30%S 57.9s 38.7s 26.7s 59.7s
Ours-50%S 25.3s 4.5s 5.5s 18.5s

Target 1336.5 2208.7 2792.2 1771.7
Gurobi 45.0s 61.0s 66.0s 73.0s

Ours-20%G 165.8s >400s >300s >600s
Ours-30%G 59.24s 37.7s 30.0s 57.3s
Ours-50%G 39.9s 5.7s 5.5s 22.5s

Target 1274.7 2218.4 2759.5 1713.2
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