
JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 1

Light-EvoOPT: A Lightweight Evolutionary
Optimization Framework for Ultra-Large-Scale

Mixed Integer Linear Programs
Huigen Ye, Student Member, IEEE, Hua Xu, Member, IEEE, Carlos A. Coello Coello, Fellow, IEEE

Abstract—Machine Learning (ML)-based optimization frame-
works emerge as a promising technique for solving large-scale
Mixed Integer Linear Programs (MILPs), as they can capture
the mapping between problem structures and optimal solutions
to expedite their solution process. However, existing solution
frameworks often suffer from high model computation costs,
incomplete problem reduction, and reliance on large-scale solvers,
leading to performance bottlenecks in ultra-large-scale problems
with complex constraints. To address these issues, this paper
proposes Light-EvoOPT, a Lightweight Evolutionary Optimiza-
tion Framework for Ultra-Large-Scale Mixed Integer Linear
Programs, which can be divided into four stages: (1) Problem
Formulation for problem division to reduce model computational
costs, (2) Model-based Initial Solution Prediction for predicting
and constructing the initial solution using a small-scale training
dataset, (3) Problem Reduction for both variable and constraint
reduction, and (4) Evolutionary Optimization for current solution
improvement employing a lightweight optimizer. Experiments on
four benchmark datasets with tens of millions of variables and
constraints and a real-world problem show that the proposed
framework based on the sole use of a lightweight optimizer,
trained on only one-thousandth of the scale of ultra-large-
scale problems, is able to outperform state-of-the-art ML-based
frameworks and advanced solvers (e.g. Gurobi) within a specified
computational time, validating the feasibility and effectiveness of
our proposed ML-based evolutionary optimization framework
for ultra-large-scale MILPs.

Index Terms—Mixed Integer Program, Evolutionary Optimiza-
tion, Graph Neural Network, Ultra-Large-Scale

I. INTRODUCTION

Mixed Integer Linear Programs (MILPs) entail tackling lin-
ear optimization problems wherein certain or all the decision
variables are subject to integer constraints [1]. Real-world
applications often involve solving ultra-large-scale problems,
such as those arising in power grid systems [2], internet
networks [3], and airport scheduling [4], which contain mil-
lions of decision variables and constraints. These problems are
critical for optimizing resource allocation and operational effi-
ciency in modern industries but pose significant computational
challenges due to the exponential growth of the search space.

· Hua Xu is the corresponding author.
· Huigen Ye and Hua Xu are affiliated with the State Key Labora-

tory of Intelligent Technology and Systems, Department of Computer Sci-
ence and Technology, Tsinghua University, Beijing 100084, China.(E-mail:
yhg23@mails.tsinghua.edu.cn, xuhua@tsinghua.edu.cn)

· C.A. Coello Coello is affiliated with the Department of Computer Science,
CINVESTAV-IPN (Evolutionary Computation Group), México, D.F. 07300,
MÉXICO. He is also (as part of a sabbatical leave) a member of the Faculty
of Excellence at the School of Engineering and Sciences, Tecnologico de Mon-
terrey, Monterrey, N.L., México. (E-mail: carlos.coellocoello@cinvestav.mx)

In numerous instances, there exists a need to concurrently
solve a substantial volume of MILPs that are homogeneous
in structure and share analogous combinatorial configurations.
However, the sheer scale and complexity of these problems
often exceed the capabilities of traditional solvers, especially
when constraints are intricate. Under these circumstances,
Machine Learning (ML)-based optimization architectures pos-
sess the capability to discern and leverage the correlations
between these configurations and their corresponding solution
values. By predicting high-quality initial feasible solutions and
guiding dimensionality reduction, ML approaches effectively
narrow down the search space, thereby accelerating the solu-
tion process, which enhances the efficiency of solving these
problems. Consequently, ML-based optimization frameworks
emerge as a highly promising avenue in this realm [5], [6].

In a groundbreaking endeavor to solve MILPs through a
ML-based approach, Gasse [7] introduced a novel concept:
a lossless graph representation of MILPs utilizing bipartite
graphs. This approach significantly enhances the efficiency of
solving MILPs by employing a Graph Neural Network (GNN)
model to adaptively learn the variable selection strategy crucial
for the branch-and-bound method [8]. The challenge with the
branch-and-bound algorithm is its search space, which grows
exponentially with an increase in the dimensionality of the
decision variables within MILPs [9], leading to a surge in
computational demands, especially for large-scale problems.
Aiming to address this computational challenge, Nair [10]
introduced the neural diving method. This technique simplifies
the problem by fixing the majority of the decision variables
based on preliminary solution predictions derived from GNN.
Consequently, this method effectively transforms large-scale
MILPs into more manageable, smaller-scale problems focused
on a subset of the remaining decision variables, thereby signif-
icantly reducing the complexity associated with the decision
variables in MILPs. Building on these advancements, Sonnerat
[11] developed NeuralLNS, which pioneers a neural-based
approach for neighborhood selection. This method strategi-
cally selects search neighborhoods to refine the initial solu-
tions generated by Neural Diving. Despite these innovations,
Neural Diving struggles to fully capitalize on the embedded
spatial information, and NeuralLNS’s dependence on large-
scale solvers introduces performance bottlenecks, with solu-
tion quality inherently limited by the capabilities of existing
solvers. To overcome these challenges, Ye [12] proposed an
advanced optimization framework that respectively employs
Multitask GNN, Gradient Boosting Decision Tree (GBDT),

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 2

and Neighborhood Optimization to generate the embedding
space, to effectively use the embedding spatial information,
and to improve the current solution by means of a lightweight
optimizer.

While the GNN&GBDT-guided framework has shown im-
pressive results in real-world scenarios, it is not without
facing significant challenges. First, representing MILPs as
complete graphs complicates the training process and demands
substantial computational efforts, particularly for large-scale
MILPs. Second, the efficacy of GNNs hinges on the avail-
ability of ultra-large-scale MILP instances that are closely
matched in size to the training dataset, requiring considerable
computational and storage resources throughout the training
period. Third, the strategy of problem reduction is confined
to decision variables alone, overlooking the benefits of inte-
grating constraint reduction, leading to a constrained scope of
problem reduction. Overall, when applied to ultra-large-scale
MILPs featuring intricate constraints, the effectiveness of this
method is significantly diminished.

To tackle the outlined challenges, we introduce here Light-
EvoOPT, a lightweight evolutionary optimization framework
tailored for addressing ultra-large-scale MILPs. This frame-
work is structured around four meticulously designed phases:

• Problem Formulation: Initially, the MILP is modeled
as a bipartite graph. Subsequently, to mitigate compu-
tational demands, the problem undergoes partitioning,
achieved through integrating the FENNEL graph parti-
tioning algorithm and the innovative Graph-Bert subgraph
partitioning concept, aiming at a significant reduction in
computational complexity.

• Model-based Initial Solution Prediction: In this phase,
the advanced Edge-aggregated Graph Attention (EGAT)
network is further enhanced with semi-convolution tech-
niques and SelectiveNet. This network is trained on a
small-scale dataset of problems with a homogeneous
structure, tailored for predicting and assembling the initial
solutions for each of the partitioned subproblems.

• Problem Reduction: Following the initial solution pre-
diction, a generalized confidence threshold approach is
employed to reduce the dimensionality in decision vari-
able space. Simultaneously, constraints are reduced using
a K-Nearest Neighbor (KNN) strategy, which identifies
and removes redundant constraints. This dual reduction
process ensures a streamlined problem scale, facilitating
a more efficient optimization in subsequent steps.

• Evolutionary Optimization: The final phase leverages
adaptive constraints partition and active constraint up-
dates to guide the neighborhood search, coupled with an
innovative individual crossover strategy that respects the
problem’s partitioned and reduced structure. This phase
is pivotal in iteratively refining the solution, employing a
lightweight optimizer to achieve iterative enhancements.

Each of these phases is integral to our proposed Light-
EvoOPT, ensuring it stands as a powerful solver for the
efficient and effective resolution of ultra-large-scale MILPs,
markedly improving upon existing methodologies with its
unique combination of strategies and lightweight design.

To illustrate the effectiveness and efficiency of Light-
EvoOPT, we undertook comprehensive testing through ex-
tensive experiments across four benchmark MILPs of ultra-
large-scale, featuring ten million scale decision variables and
constraints, alongside a real-world case study. The exper-
imental results are benchmarked against a range of other
competitive solvers for comparison. The findings underscore
a remarkable superiority of our proposed framework, which
leverages a lightweight optimizer and a small-scale training
dataset, standing out against both contemporary optimization
frameworks and established large-scale solvers such as Gurobi
and SCIP, particularly in the realm of ultra-large-scale MILPs.

A further detailed analysis reveals that Light-EvoOPT excels
in significantly diminishing the computational complexity of
the model and in executing effective problem reduction. These
outcomes robustly validate the framework’s high effectiveness
and efficiency. The contributions of our work are multifaceted,
offering valuable advancements in the optimization field,
which can be summarized as follows:

• We introduce an innovative lightweight evolutionary op-
timization framework explicitly designed for tackling
ultra-large-scale MILPs using only small-scale training
data and a lightweight optimizer. The proposed approach
encompasses problem formulation, model-based initial
solution prediction, problem reduction, and evolutionary
optimization. Each of these components plays a crucial
role in minimizing the computational complexity of the
model and enhancing its capability for dimensionality
reduction.

• We embark on pioneering efforts by employing ultra-
large-scale standard MILPs of ten-million scale for the
first time, benchmarking our proposed framework against
state-of-the-art ML-based optimization frameworks and
advanced solvers. We effectively showcase the capabil-
ity of our framework to solve ultra-large-scale MILPs
with lightweight optimizers and small-scale datasets. This
comparison provides foundational insights into the ef-
ficient resolution of extensive MILPs with constrained
computational resources.

• We explore a model self-optimization strategy within
ML-based optimization frameworks, focusing on the in-
tegration of model pruning to refine the framework’s
efficiency and scalability. Specifically, by reducing 20%
of the network parameters, the pruned variant of Light-
EvoOPT achieves comparable or improved performance
on ultra-large-scale MILPs, with a significant reduction in
computational overhead. This novel self-optimization ap-
proach demonstrates the potential of pruning techniques
to streamline the optimization process without compro-
mising solution quality. Moreover, it lays a foundation
for further advancements in lightweight optimization for
ultra-large-scale problems.

The remainder of this paper is organized as follows: Sec-
tion II reviews the most relevant previous related work on
MILPs and ML-based optimization frameworks. Section III
details our proposed Light-EvoOPT framework and its four
core stages. Section IV presents the experimental settings and

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 3

!!	#! +⋯+ 	 !"	#"
&!!	#! +⋯+ &!" #" ≤ (!

⋮
&$!#! +⋯+ &$"#" ≤ ($

min% 	 &!!

&!"
&$"

#!

MILP Instance Bipartite Graph Representation

&$!

…

⋮⋮⋮

#"
#!

#"

.!

.$.$

.!

Fig. 1. Conversion of a MILP instance into a bipartite graph. This graph
consists of two sets of nodes: the set {δ1, . . . , δm} containing m constraint
nodes on the left side of the graph, and the set {x1, . . . , xn} comprising n
decision variable nodes on the right side.

the results obtained. Finally, Section V concludes the paper
and provides some potential paths for future research.

II. PREVIOUS RELATED WORK

A. Mixed Integer Linear Programs

Mixed Integer Linear Programs (MILPs) represent a cat-
egory of optimization problems characterized by a linear
objective function subject to multiple linear constraints, with
the stipulation that some or all of the decision variables are
constrained to integer values. Formally, an MILP is structured
as follows [13]:

min
x

cTx, subject toAx ≤ b, l ≤ x ≤ u, xi ∈ Z, i ∈ I, (1)

where x represents the decision variables, with the dimen-
sionality denoted by n ∈ Z, and l, u, c ∈ Rn correspond to
the lower bounds, upper bounds, and coefficient values of the
decision variables, respectively. The matrix A ∈ Rm×n and the
vector b ∈ Rm define the linear constraints of the problem.
The set I ⊆ {1, 2, . . . , n} denotes the indices of variables
that are constrained to be integer values. A solution to the
MILP is considered feasible if the decision variable vector
x ∈ Rn satisfies all the constraints specified in Equation (1).
Among feasible solutions, the one that minimizes the objective
function value is deemed optimal [14]. Furthermore, if the
removal of a constraint alters the optimal solution of the MILP,
then that constraint is considered as an active constraint, and
vice versa for redundancy constraints [15], [16].

B. Bipartite Graph Representation

Gasse’s proposed MILP bipartite graph representation [7]
achieves a lossless translation of the MILP into a graph format,
serving as input for the neural embedding network [10]. This
process is depicted in detail in Figure 1. The n decision
variables in MILP are represented as the set of variable nodes
on the right side of the bipartite graph, while the m linear
constraints are represented as the set of constraint nodes on the
left side. An edge connecting a variable node and a constraint
node indicates the presence of the corresponding variable in
that constraint.

Formally, let hi
x, hi

δ , and h(i,j) denote the feature selection
of the ith variable node, jth constraint node, and edge (i, j)

.!

#!

GCN with Half Convolutions

Initial Embedding

Initial Embedding

Constraint-side
Convolution

Variable-side
Convolution

Final Embedding
& Sigmoid

Fig. 2. The architecture of GCN with only half-convolutions consists of a
single layer. The layers in GCN can be segmented into two successive passes:
one from variables to constraints and another from constraints to variables.

respectively. The classical feature selection policy can be
expressed as follows:

hi
x = (ci, li, ui, ti, di),

hj
δ = (bj , oj),

h(i,j) = (aij),

(2)

where ci, li, ui, and ti denote the coefficient, lower bound,
upper bound, and type of the ith decision variable respectively;
di ∈ {0, 1} indicates whether the ith decision variable is
restricted to take integer values; bj and oj refer to the value
and symbol of the jth constraint; and aij denotes the weight
of edge (i, j).

C. FENNEL Graph Partition Algorithm

For graphs at the million-level scale, the streaming graph
partitioning algorithm is commonly utilized. Two primary
heuristics exist for streaming graph partitioning. On the one
hand, newly arrived vertices are assigned to the cluster with
the largest number of neighbors. On the other hand, they
can be assigned to the cluster with the fewest non-neighbors.
FENNEL introduces an innovative approach by combining
these two heuristics.

Formally, for a graph G = (V, E) comprising n vertices and
m edges, partitioning it into k blocks, FENNEL aggregates
vertices with dense edges into a single block while segregating
vertices with sparse edges are placed into separate blocks.
Specifically, it systematically evaluates each newly arrived
vertex v in the graph one by one and computes δg(v,Pi) for
each block Pi that satisfies |Pi| < ν n

k , as follows:

δg(v,Pi)← |Pi ∩N(v)| − αγ|Pi|γ−1, (3)

where N(v) denotes the neighbor node set of v, ν and γ are
preset parameters related to block balancing and minimum cut,
and α =

√
k m
n3/2 denotes the balance between the two types

of heuristics.

D. Graph Convolutional Networks

In MILPs, utilizing bipartite graph representations, a Graph
Convolutional Network (GCN) [17] is employed to learn neu-
ral embeddings and to facilitate model-based initial solution
prediction. Formally, denoting E as the edges in a bipartite
graph, a k-layers GCN can be expressed as follows:

hk
v = fk

2 ({h(k−1)
v , fk

1 ({h(k−1)
u : (u, v) ∈ E})}), (4)

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 4

node’s embeddingedge to be deleted

variable nodeconstraint node

……

…

...

...

Large-scale MIP

Small Training Dataset
with Small-scale

Optimizer
X = [3, 1, 0, ……, -2]

!!	#! +⋯+ 	 !"	#"
	 &!!	#! +⋯+ &!" #"≤ (!

⋮
&$!#! +⋯+ &$"#" ≤ ($

min% 	

Bipartite Graph
Representation

...

x1

xn

δ1

δm

xi

...
...

Graph Partition-based
Problem Division

EGAT with Half
Convolutions

SelectiveNet-based
Prediction

...

...

...

...

Variables ReductionConstraint Reduction

Optimal
Solution

Model Based Initial Solution Prediction

Dataset
Problem

Formulation
Problem Reduction

0.9

0.6

0.1

current solution constraint

redundant constraint fixed variable variable to be optimized optimized variable

optimal variable

FENNEL

Trim high-confidence
decision variables

1.2 predict value
1 high confidence 0 low confidence redundant to be deleted redundant to be added

Trim redundant constraints

Variable Neighborhood
Partition

……

Constraint Partition

……

Update Constraint Set

.
x .
r

Search with
Fixed Radius

.
x .
r

Neighborhood
Crossover

Initial Solution Search Neighborhood
Search

Search with
Fixed Radius

Update Neighborhood Set

Data-driven Optimization

C
urrent Solution

Updated Constraints & Neighborhood Updated Constraints

1

1

0...

x1

xn

δ1

δm

xi

...
...

...

...
...

neighborhood

Fig. 3. An overview of LightEvoOPT: The blue line indicates its exclusive use during training, while the black line refers to its application during both training
and testing. First, the MILP is represented as a bipartite graph, and the FENNEL graph partitioning algorithm is employed to divide the problem, thereby
reducing computational costs. Second, utilizing the divided graph representations, an EGAT combined with SelectiveNet, trained on a small-scale dataset, is
employed to predict and construct the initial solution for the original large-scale MILP. Then, leveraging the predicted solution, confidence thresholds for
decision variables and a KNN strategy for constraints are introduced to reduce the dimensionality of the problem. Finally, based on problem division and
reduction, adaptive constraints partitioning and active constraint updating guide neighborhood search and individual crossover, iteratively improving the current
solution through a lightweight optimizer.

where hk
v denotes the hidden state of node v in the kth

layer. fk
1 aggregates hidden values from the neighbors in the

previous (k − 1)th layer to acquire aggregation information,
while fk

2 blends the hidden value of the current node v with
the aggregation information from its neighbors.

For the bipartite graph representation, a GCN with two
interleaved half-convolutional layers has been shown to yield
superior performance [7], [18]. Formally, denoting Vx as the
set of n variable nodes and Vδ as the set of m constrained
nodes, the k-layer half-convolutional GCN can be expressed
as follows:

hk
δj = fk

δ ({h
(k−1)
δj

,
∑

(xi,δj)∈E

gkδ ({h(k−1)
x , h

(k−1)
δj

})}), δj ∈ Vδ,

hk
xi

= fk
x ({h(k−1)

xi
,

∑
(xi,δj)∈E

gkx({h(k−1)
xi

, hk
δj})}), xi ∈ Vx,

(5)

where hk
x, hk

δ , gkx, and gkδ serve as the aggregation functions.
An illustration of a single-layer GCN with a half-convolutional
layer is presented in Figure 2.

E. Edge Aggregated Graph Attention Network

The current GCN model discussed in Section II-D faces two
primary challenges. First, it relies solely on a fixed strategy for
aggregating node information. Second, it fails to fully integrate
edge features, resulting in suboptimal performance, especially
in graphs with edge weights. To address these issues, Gong
[19] proposed the Edge Aggregated Graph Attention Net-
work (EGAT), which introduces an attention mechanism for
graph neighborhoods and fully leverages edge information to
enhance the learning of neural embeddings and to improve
model-based initial solution prediction. Formally, denoting E
as the edges in a bipartite graph, an EGAT with k layers can
be expressed as follows.

hk
v = σ({αk

uv(h
k−1
u , Ek−1

uv) : (u, v) ∈ E}, gk(hk−1
v)), (6)

where hk
v represents the hidden state of node v in the kth

layer, while Euvk denotes the hidden state of the edges
connecting nodes u and v in the kth layer. Here, σ represents
a nonlinear activation function, and gk is the transformation
that maps the node’s features from the input space to the
output space. Specifically, gk(hvk−1) = Whk−1

v , where W
is a transformation parameter matrix. Additionally, αk

uv is the
attention coefficient, which is a function of hk−1

u , hk−1
v and

Ek−1
uv , which is defined as follows:

αk
uv = DS(exp{L(aT [Whk−1

u ||aT [Whk−1
v])}Ek−1

uv), (7)

where L is the LeakyReLU activation function [20]; W
represents a transformation parameter matrix, and || represents
the concatenation operation. Finally, the attention coefficients
serve as new edge features for the subsequent layer, defined as
Ekuv = αk

uv . Moreover, DS is the doubly stochastic normaliza-
tion operator [21], aiming to prevent an undesired increase in
the magnitude of the output features due to this multiplication.
Formally, denoting the raw edge features as Ê , the normalized
features E can be calculated through DS which is denoted as
follows:

Ẽijp =
Êijp∑N
k=1 Êikp

, (8)

Eijp =

N∑
k=1

ẼikpẼjkp∑N
v=1 Ẽvkp

, (9)

where Eij ∈ RP represents the P -dimensional feature vector
of the edge connecting the ith and jth nodes; Eijp denotes the
pth channel of the edge feature in Eij . In addition, when the
ith and jth points are not contiguous, Eijp = 0 for any p.

F. Network Pruning

The recent rise of large-scale deep neural networks under-
scores the need for deep neural compression [22]. From among

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 5

a wide variety of network compression methods, pruning [23]
has emerged as highly effective and practical. The objective
of network pruning is to eliminate redundant parameters from
a given network, thereby reducing its size and potentially ac-
celerating inference speed. As a prominent pruning algorithm,
unstructured pruning [24] has shown significant success across
numerous network compression tasks.

Unstructured pruning typically begins by learning connec-
tivity through conventional network training. Subsequently, it
prunes connections with small weights–those falling below a
predetermined threshold–thus removing them from the net-
work. Following this, the network undergoes retraining to de-
termine the final weights for the remaining sparse connections.
Ultimately, fine-tuning is employed to refine the compressed
network structure, resulting in reduced parameter sizes without
substantial performance degradation.

III. OUR PROPOSED LIGHT-EVOOPT

This section introduces Light-EvoOPT, which is our pro-
posed evolutionary lightweight optimization framework de-
signed to solve ultra-large-scale mixed integer linear programs
using a lightweight optimizer and a small training dataset.
Light-EvoOPT can be divided into four stages: Problem For-
mulation (Section III-A), Model-based Initial Solution Predic-
tion (Section III-B), Problem Reduction (Section III-C), and
Evolutionary Optimization (Section III-D). The overall archi-
tecture of the proposed framework is illustrated in Figure 3.

A. Problem Formulation

In Light-EvoOPT, the large-scale MILP is initially repre-
sented in the form of a Bipartite Graph. Subsequently, the
FENNEL Graph Partition algorithm [25] is employed to
partition the graph into multiple blocks. Following these steps,
all the subgraphs obtained from the graph partition serve as
inputs for feature-embedding neural networks.

1) Bipartite Graph Representation: Building upon the clas-
sic bipartite graph representation introduced in Section II-B,
we further enhance the feature selection policy to improve
embedding ability. By integrating the random feat strategy
[26], the reliability of predicting MILP feasibility, optimal
objective values, and optimal solutions is remarkably strength-
ened when facing some particular MILPs called “foldable”
[26]. Moreover, the conventional classification feature selec-
tion strategy, relying solely on a single integer, often fails to
capture classification information adequately, resulting in weak
feature neural embedding within the feature embedding neural
network. To address this limitation, we employ a one-hot [27]
strategy to represent classification features, thereby amplify-
ing the influence of classification information on the neural
embedding outcomes.Formally, let hi

x, hj
δ , and h(i,j) denote

the feature selection of the ith variable node, jth constraint
node, and edge (i, j), respectively. Based on Equation (2), the
refined feature selection policy can be expressed as follows:

hi
x = (ci, li, ui, di, ti, ξ),

hj
δ = (bj , o

′
j , ξ),

h(i,j) = (aij),

(10)

where ξ ∼ U(0, 1) represents a random feat sampled from a
uniform distribution between 0 and 1, and o′j is the one-hot
representation of the type of constraint in the jth constraint
node, with o′j defined as {≥→ [1, 0, 0],≤→ [0, 1, 0],=→
[0, 0, 1]}.

2) Graph Partition-based Problem Division: In Light-
EvoOPT, the bipartite graph representation of the MILP
problem is partitioned into smaller, manageable subgraphs
to tackle the challenges associated with solving ultra-large-
scale problems. As discussed in Section III-A, the entire
MILP is first modeled as a bipartite graph, where one set of
nodes represents the variables, and the other set represents
the constraints. This bipartite graph is then partitioned using
the FENNEL algorithm [25], which is both computationally
efficient and effective in minimizing disruptions to the graph’s
topological structure. The primary challenges that arise when
solving ultra-large-scale MILPs involve the massive compu-
tational and memory requirements associated with solving a
single, monolithic problem. Instead of directly feeding the
entire bipartite graph representation into a neural network for
feature embedding, we partition the graph using FENNEL
into numerous low-correlation subgraphs, where each sub-
graph represents a smaller subproblem. These subproblems are
then sequentially processed by the feature-embedded neural
network, transforming a large-scale optimization problem into
the parallel solution of multiple smaller and more tractable
problems.

The partitioning process proceeds as follows: First, the
FENNEL algorithm is applied to the bipartite graph to partition
it into subgraphs with minimal inter-connections. This ensures
that the subgraphs are of approximately equal size, which is
crucial for balancing the computational load between different
subproblems. Each subgraph is then processed sequentially by
the feature-embedded neural network. By solving these smaller
subproblems in parallel or sequentially, Light-EvoOPT can
efficiently handle tens of millions of variables and constraints
without overwhelming computational resources. The use of
FENNEL ensures that the partitioning process is efficient in
both time and memory usage, while the low-correlation nature
of the subgraphs minimizes the loss of important structural
information during partitioning. This allows Light-EvoOPT
to maintain high solution accuracy and scalability, making it
particularly well-suited for solving ultra-large-scale MILPs.
This graph partition-based problem division strategy repre-
sents a key innovation of our framework, offering a scalable
solution to the challenges posed by large-scale optimization
problems. By breaking down a complex problem into smaller,
independent subproblems, Light-EvoOPT achieves significant
improvements in both computational efficiency and solution
accuracy.

B. Model-based Initial Solution Prediction

Given a graph representation consisting of multiple small-
scale subgraphs derived from a large-scale MILP, the EGAT
with Half-convolutions learns neural embeddings of the deci-
sion variables. Subsequently, the SelectiveNet-based Predic-
tion network predicts the initial values of the corresponding

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 6

⋮⋮

⋮⋮

⋮⋮

⋮⋮

⋮⋮ ⋮⋮ ⋮⋮

Step 1 Step 2 Step 3

Fig. 4. Information transition flow in the EGAT with half-convolutions
involves consecutive steps as follows: Step 1, transforming variable nodes
and constraint nodes information to the edge; Step 2, transforming the
variable nodes and edge information to constraint nodes; Step 3, transforming
constraint nodes and edge information to the variable node.

decision variables in the MILP based on these neural embed-
dings. Finally, the predicted initial solutions will guide the
subsequent stage of problem reduction.

1) EGAT with Half-convolutions: Based on the GNN with
half-convolutions [18] (Section II-D) and EGAT [19] (Sec-
tion II-E), we propose an EGAT with a multi-layer half-
convolutions structure. This combination aims to enhance
the learning of neural embeddings for decision variables in
each divided subgraph further. Formally, based on Equa-
tions (5) and (6), considering E as the edges in the bipartite
graph, a k-layer EGAT with a multi-layer half-convolutions
structure can be represented as follows:

αk
xiδj = DS(exp{L(aT [Whk−1

xi
||aT [Whk−1

δj
])}Ek−1

xiδj
),

hk
δj = σ({αk

xiδj (h
(k−1)
x , Ek−1

xiδj
) : (xi, δj) ∈ E}, gk(hk−1

δj
)),

hk
xi

= σ({αk
xiδj (h

k
δj , E

k−1
xiδj

) : (xi, δj) ∈ E}, gk(hk−1
xi

)),

Ekxiδj = αk
xiδj ,

(11)

where hk
δj

and hk
xi

represent the hidden state of constraint node
δj and variable node xi in the kth layer, respectively. Ekxiδj

and αk
xiδj

denote the hidden state and attention coefficient of
the edge connecting variable node xi and constraint node δj
in the kth layer, respectively. σ denotes a non-linear activa-
tion function, and gk represents a transformation that maps
node features from the input space to the output space. The
information transition flow of EGAT with half-convolutions is
illustrated in Figure 4.

2) SelectiveNet-based Prediction: Using the neural embed-
ding of decision variables from EGAT, a SelectiveNet [28] pre-
dicts the initial value of each corresponding decision variable
for every subdivided small-scale MILP. For binary variables
xi, alongside the probability that the decision variable equals
1, denoted as p(xi|M), SelectiveNet introduces an additional
output yi ∈ {0, 1} determining whether xi should be predicted
(yi = 1) or not.

For general integer variables or even real variables, de-
pending on the required accuracy, the neural embedding of a
decision variable needs to pass through multiple independent
SelectiveNet models in parallel. For the ith decision variable,
the output of the jth SelectiveNet can represent the probability
that the jth binary bit is 1 and whether the jth binary bit
should be predicted or not, represented as p(xij |M) and yij .
The value of the bit is determined as follows:

xij =

{
⌊p(xij |M) + 0.5⌋, yij = 1

Unpredictable, yij = 0
(12)

For a conditionally independent model, when combined
with Focal Loss [29], we define the predicted value loss Lv

and the predicted proportion loss Lp as follows:

Lv =
−
∑

i,j yijwij(1− p(xij |M))γ log p(xij |M)∑
i,j yij

,

Lp = Φ(C − 1

|
∑

i,j 1|
∑
i,j

yij),
(13)

where Lv represents the prediction loss, with γ ≥ 0 being
the focusing parameter and wij the class balancing parameter.
This term helps to improve the accuracy of the predicted
variables, especially for harder samples. On the other hand,
Lp is the prediction proportion loss, where C is a coverage
threshold that defines the desired relative frequency of the
predicted variables. The function Φ(a) = max(0, a)2 serves
as a quadratic penalty term, discouraging the network from
predicting too many or too few variables. This forces the
network to focus on positions where it is confident, preventing
it from wasting capacity on uncertain predictions.

The total loss function is then defined as:

L = βLv + (1− β)Lp, (14)

where β is a hyperparameter that controls the trade-off be-
tween the prediction accuracy and the coverage of predicted
variables.

The practical significance of these two terms is as follows:
Lv ensures that the network focuses on making accurate
predictions for the decision variables, while Lp acts as a
constraint to force the network to prioritize predictions only for
variables where it has high confidence. This balance allows the
model to concentrate its limited capacity on positions where it
can make the most reliable predictions, rather than attempting
to predict every variable.

C. Problem Reduction

Given the predicted initial solution of the MILP, the gen-
eralized confidence threshold method adaptively fixes high-
confidence decision variables to achieve Variable Reduction.
Subsequently, the KNN strategy is employed for Constraint
Reduction to identify active constraints. The unfixed decision
variables and KNN constraints jointly guide the initial solution
search and the optimization process.

1) Variable Reduction: Aiming to reduce variable dimen-
sionality efficiently, Light-EvoOPT proposes a generalized
confidence threshold method based on SelectiveNet and the
confidence threshold method specifically designed for binary
variables [18]. Specifically, we redefined the additional output
of SelectiveNet yij as yij ∈ [0, 1], denoting the confidence
value. Based on the confidence value obtained from the model
predictions, the total confidence value fi of the decision
variable xi which contains c binary bits can be represented
as follows:

fi = c

√√√√ c∏
j=1

yij . (15)

Subsequently, the confidence values of the decision vari-
ables are arranged in descending order. Utilizing the specified

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 7

reduction ratio of k%, the top k% of the decision variables
are set to their predicted values. The remaining decision
variables constitute a fresh small-scale optimization problem,
which is then introduced into the initial solution search of
the subsequent stage. This process accomplishes the dimen-
sionality reduction of decision variables for the large-scale
MILP. Due to the large parameters of the initial solution
prediction network and the high graphic memory requirement
of computational resources, we further try to prune EGAT (see
Section II-F), and we will detail the effect before and after
pruning in the experimental section.

2) Constraint Reduction: In scenarios where integer con-
straints are not under consideration, the feasible domain de-
fined by the linear constraints in the MILP exhibit a re-
markable property: convexity. Within this convex space, the
optimal solution of the MILP often lies near a cluster of
active constraints [30]. Leveraging this insight, the predicted
initial solution–derived from a model tailored to approximate
the optimal solution–serves as a valuable estimate of the true
optimum. By utilizing this estimate, we can effectively gauge
the proximity of each constraint hyperplane to the predicted
solution.

To implement constraint reduction, we employ a K-nearest
neighbors (KNN) approach. Each linear constraint in the
MILP can be viewed as a hyperplane, and we calculate the
distance from the current solution point to each hyperplane.
The K nearest hyperplanes–i.e., the ones closest to the current
solution–are considered active constraints and are retained
in the MILP formulation. These active constraints are likely
to be the most crucial in determining the optimal solution,
while the more distant constraints are treated as redundant
and are pruned. The distance between the current solution
and a constraint hyperplane is computed by measuring the
perpendicular distance, allowing us to quantitatively assess the
relevance of each constraint. This process is not static; rather,
it is dynamically updated as the solution process progresses.
As described in Section III-D3, the set of active constraints
is continuously maintained and adjusted based on the updated
solution. This ensures that the optimization process always
focuses on the most relevant constraints, significantly reducing
the complexity of the problem while maintaining solution
quality. Through this dynamic KNN-based constraint reduction
mechanism, we are able to effectively alleviate search pressure
and improve the efficiency of solving large-scale MILPs.

D. Evolutionary Optimization

Starting with the predicted initial solution and following
the problem reduction, we address the reduced subproblem
initially to derive the Initial Solution for the complete MILP.
Subsequently, leveraging Neighborhood Set Updating along-
side active Constraint Set Updating, iterative Evolutionary
Optimization processes of neighborhood search and individ-
ual crossover enhance the current solution iteratively. Finally,
upon reaching a predetermined wall-clock time or meeting
specific conditions, the current solution is presented as the
final optimization result.

Algorithm 1 Initial Solution Search
Input: The number of decision variables n, predicted value x̂,
prediction loss f , variable proportion α representing the fixed
radius
Init: Initial Solution X = {}
X ← x̂
Sort the decision variables in ascending order of f
αset = α
repeat
F ← The first (1− αset)n decision variables ▷Fixed
U ← The last αset decision variables ▷Unfixed
F ′,U ′ ← REPAIR(F ,U ,X)
if |U ′| > αn then

αset = η ∗ αset

end if
until |U ′| ≤ αn
X ← SEARCH(F ′,U ′,X)
Return: X

Algorithm 2 REPAIR Algorithm
Input: The set of fixed variables F , the set of unfixed variables
U , the current solution X
{A, b, l, u} ← The coefficient of the given MILP
n← the number of decision variables
m← the number of constraints
for i = 1 to m do
N ← 0
for j = 1 to n do

if The jth decision variable ∈ F then
N ← N + Xj ∗Ai,j

else

xij =

{
N ← N + lj ∗Ai,j , Aij > 0

N ← N + uj ∗Ai,j , Aij ≤ 0

end if
end for
if N > bi then

for j = 1 to n do
if The jth decision variable ∈ F then

Remove the jth decision variable from F
Append the jth decision variable into U
N ← N −Xj ∗Ai,j

xij =

{
N ← N + lj ∗Ai,j , Aij > 0

N ← N + uj ∗Ai,j , Aij ≤ 0

if N ≤ bi then
BREAK

end if
end if

end for
end if

end for
Return: F ,U

1) Initial Solution Search: For the large-scale MILP with
n decision variables, we first define a coefficient α ∈ (0, 1)
to denote that the lightweight optimizer can solve small-scale
MILP containing at most αn decision variables. Following
this, an initial solution search method is employed for the
reduced small-scale MILP obtained from the dimensionality
reduction stage. Given the predicted value x̂i and the predic-
tion confidence value fi for each decision variable, the deci-
sion variables are arranged in ascending order based on their
prediction losses. For the pre-defined coefficient α ∈ (0, 1),
which denotes that the lightweight optimizer can solve small-

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 8

#!.!

#'

#&

#(

#)

.&

.'

Graph Partition

#!

#&

#'

#(

#).(.&

.!
.'

.(

Neighborhood PartitionConstraints Partition

Fig. 5. Use of the partitioning result of the bipartite graph as a neighborhood
partition. The decision variables contained in the constraints in the partitioned
blocks form the corresponding neighborhood

scale MILP containing at most αn decision variables, the first
(1−α)n decision variables are held constant. In contrast, the
remaining variables are explored within a predetermined fixed
radius. The specific steps are outlined in Algorithm 1, where
η ∈ (0, 1) is a reduction coefficient used to expand the fixed
proportion.

Specifically, the SEARCH(F ,U ,X) function in Algo-
rithm 1, Algorithm 3 and Algorithm 4 implements the fixed
radius search strategy. This function optimizes the variables
that are free (those not in F) using a restricted MILP solver,
such as SCIP, while keeping the remaining variables fixed at
their current values. The function can be written as follows:

min
x/∈F

cTx

subject toAx ≤ b, l ≤ x ≤ u, x ∈ Zn,

xi = Xi,∀xi ∈ F ,

(16)

where F refers to the set of decision variables fixed to their
current solution values as defined in Algorithm 1. The remain-
ing variables, which fall within the fixed radius determined by
α, are optimized in this search process.

However, due to the possibility of incorrect predictions,
the Mixed-Integer MILP corresponding to Equation (16) may
become infeasible, resulting in the failure of the current
solution. To address this issue, we introduce a REPAIR
Algorithm designed to examine and rectify constraints that
are inherently infeasible by removing the fixation of certain
illegal variables associated with these infeasible constraints.
In particular, when dealing with a given MILP alongside a
set of fixed variables denoted as F , the REPAIR algorithm
systematically iterates through each constraint in the MILP.
For each constraint under consideration, the algorithm assesses
whether it is inevitably infeasible based on the upper and lower
bounds of the unfixed variables. If the algorithm determines
that the constraint is indeed infeasible, it proceeds to release
the fixation of specific decision variables associated with that
constraint, aiming to restore feasibility. The intricate steps of
this process are elucidated in Algorithm 2. Finally, the optimal
solution obtained by the lightweight optimizer is recombined
with the reduced decision variables to form an initial feasible
solution.

2) Neighborhood Set Update: At each optimization itera-
tion, the creation of a fresh neighborhood becomes imperative
to navigate the landscape of local optima effectively. Building
upon the subgraph partitioning derived from the FENNEL al-
gorithm, we employ the Adaptive Constraints Partition (ACP)
[31] algorithm to further harness the bipartite graph’s potential.

Algorithm 3 Adaptive Constraints Partition
Input: The set of subgraphs G = {(∆1, E1), . . . , (∆k, Ek)}, the
coefficient α ∈ (0, 1) to denote that the ablity of lightweight
optimizer.
Init: Neighborhood Set N = {}
Nnow ← {}
for Gsub = (∆sub, Esub) ∈ G do
Nnew ← Nnow

Xsub ← variables appearing in the constraint set ∆sub

Xchoose ← Xsub\{x|x ∈ Nsub, ∀Nsub ∈ (N ∪Nnow)}
if |Nnow ∪Xchoose| ≤ n ∗ α then
Nnow ← Nnow ∪Xchoose

else
N ← N ∪Nnow

Nnow ← Xchoose

end if
end for
Return: Neighborhood Set N

This synergy yields refined partitioning results for both the
constraint and variable sets, as depicted in Figure 5. Initially,
leveraging the FENNEL algorithm, the bipartite graph G
undergoes segmentation into a collection of subgraphs denoted
as G = {(∆1, E1), . . . , (∆k, Ek)}, where ∆k represents the
constraints within each subgraph and Ek characterizes the edge
connectivity. Subsequently, employing ACP’s two-step selec-
tion methodology–first constraints, then variables–we strate-
gically identify decision variable nodes interconnected by the
set of constraint points within each subgraph. This deliber-
ate selection process enhances the cohesion among decision
variables within the same neighborhood, thereby augmenting
the efficacy of neighborhood search operations. The detailed
pseudo-code of the algorithm is shown in Algorithm 3.

3) Constraint Set Update: Given the potential discrepancy
between the initially predicted and optimal solutions, the initial
forecast of active constraints may exhibit bias. Therefore, as
each optimization iteration progresses and the current solution
gradually converges towards optimality, Light-EvoPOT recal-
culates a fresh set of KNN constraints. These updated con-
straints refine the estimates of the active constraints, leveraging
the current solution as the new reference point. Moreover,
recognizing that the reliability of active constraint predictions
improves throughout optimization, we adopt a progressive
strategy. Initially, we select a larger value of K in the KNN
algorithm, gradually narrowing down the set of active con-
straints as the optimization process proceeds. Following each
iteration, K is updated to K×η until the predefined minimum
reduction threshold is attained. Here, η ∈ (0, 1) serves as
the preset descent rate, facilitating the gradual reduction of
constraints. Lastly, as changes occur in the active constraint
set, the feasible solution region undergoes alterations as well.
To ensure that the current solution remains within the bounds
of the revised feasible solution range dictated by the updated
active constraint set, we employ the REPAIR algorithm de-
tailed in Algorithm 2. This mechanism effectively “repairs” the
current solution, ensuring its adherence to the new constraints.

4) Evolutionary Optimization: Based on the initial solution
obtained from the prediction, the efficient Evolutionary Op-
timization method can quickly improve the current solution.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 9

Neighborhood Crossover

#!

#&

#'

#(

#)

#!

#&

#'

#(

#)

#!

#&

#'

#(

#)

Neighborhood Partition

Fig. 6. Use of the hierarchical crossover strategy for neighborhood merging
and for the corresponding individual crossover.

Algorithm 4 Neighborhood Search
Input: The set of decision variables X , the number of decision
variables n, predicted value ŷ, prediction loss fi, variable propor-
tion α, neighborhood Nnow, current solution X
Init: Neighborhood search solution X ′ = {}
Sort the decision variables in Nnow in descending order of fi ∗
|ϕi − ŷi|
N ← The first αn decision variables in Nnow

F ← {x∥x ∈ X ∧ x /∈ N} ▷Fixed
U ← {x∥x ∈ X ∧ x ∈ N} ▷Unfixed
X ′ ← SEARCH(F ,U ,X)
Return: X ′

Algorithm 5 Neighborhood Crossover
Input: The set of decision variables X , the number of decision
variables n, neighborhood N1, N2, neighborhood search solution
X ′

1,X ′
2

Init: Neighborhood crossover solution X = {}
X ′′ ← {}
for i = 1 to n do

if The i-th decision variables in N1 then
X ′′[i]← X ′

1[i]
else
X ′′[i]← X ′

2[i]
end if

end for
F ← X ▷Fixed
U ← ∅ ▷Unfixed
F ′,U ′ ← REPAIR(F ,U ,X ′′)
if |U ′| ≤ αn then

X← SEARCH(F ′,U ′,X ′′)
end if
Return: X

In ultra-large-scale optimization problems, large neighborhood
search has a good solution and convergence performance. We
integrate the idea of using a genetic algorithm on the basis of
large-neighborhood search, and propose a strategy based on
multiple large-neighborhood parallel search processes and hi-
erarchical crossover of individual solutions obtained from the
search processes in order to achieve fast iterative improvement
of the initial feasible solutions. Based on the updated neighbor-
hood set and updated active constraint set, the neighborhood
search is executed in parallel in each neighborhood, utilizing
a lightweight optimizer. Specifically, for the ith neighborhood
Ni, Algorithm 4 shows the details in neighborhood search,
where fi, Xi and ŷi denote the prediction loss defined in
Equations (15), the value in the current solution and the
predicted value of the ith decision variable, respectively. Since
the size of the neighborhood is limited to no more than αn, it
is easy to fall into a local optimum because the radius of the
neighborhood search is too small, so neighborhood crossover

TABLE I
THE SIZE OF ONE REAL-WORLD CASE STUDY IN THE INTERNET DOMAIN

AND FOUR WIDELY USED NP-HARD BENCHMARK MILPS.

Problem Scale Number of
Variables

Number of
Constraints

SC
(Minimize)

SC1 200000 200000
SC2 2000000 2000000
SC3 20000000 20000000

MVC
(Minimize)

MVC1 100000 300000
MVC2 1000000 3000000
MVC3 10000000 30000000

MIS
(Maximize)

MIS1 100000 300000
MIS2 1000000 3000000
MIS3 10000000 30000000

MIKS
(Maximize)

MIKS1 200000 200000
MIKS2 2000000 2000000
MIKS3 20000000 20000000

Case
(Maximize) Case Study 2040000 100003

is crucial. Based on the result of neighborhood partition,
neighborhood crossover is carried out step by step, as shown
in Figure 6. Algorithm 5 outlines the specific procedure for
crossing two neighborhoods, denoted as N1 and N2.

IV. EXPERIMENTS

To validate the effectiveness and efficiency of Light-
EvoOPT for ultra-large-scale MILPs, we compare it with
respect to two types of baseline approaches on four widely
used ultra-large-scale NP-hard standard MILP datasets: Set
Covering (SC, Minimize) [32], Minimum Vertex Cover (MVC,
Minimize) [33], Maximum Independent Set (MIS, Maximize)
[34], Mixed Integer Knapsack Set (MIKS, Maximize) [35] and
one real-world large-scale MILP in the internet domain (Case
Study, Maximize). Within the baseline approaches adopted
there are state-of-the-art MILP solvers, including SCIP [36],
CPLEX [37] and Gurobi [38]. The other one is the mainstream
ML-based optimization framework based on GNN&GBDT
(GBDT) [12]. And we also make a comparison with respect to
the latest ML-based optimization framework Light-MILPopt
(MILP) [3]. The details of the datasets, baselines and our
detailed experimental setup are presented in Section IV-A.

To ensure a fair comparison, we employ multiple evaluation
metrics to analyze the performance of all the methods dis-
cussed in this paper, including a detailed comparison of solu-
tion effectiveness under the same running time (Section IV-B),
an evaluation of solution efficiency under the same solution
quality (Section IV-C), a convergence analysis (Section IV-D),
and a training efficiency analysis (Section IV-E).

A. Experimental Settings

1) Dataset: For the four widely used NP-hard benchmark
MILPs, the existing datasets cannot meet such large-scale data
requirements, so we used data generators to produce both the
training and the test datasets. Specifically, for the Maximum
Independent Set problem (MIS) or Minimum Vertex Covering
problem (MVC) with n decision variables and m constraints,
we generated a random graph with n nodes and m edges to
correspond to an MILP that meets the scale requirements. For
the Set Covering problem (SC) with n decision variables and

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 10

TABLE II
THE SETTINGS FOR THE FIXED EXECUTION TIME AND THE FIXED TARGET
OBJECTIVE FUNCTION VALUE FOR ONE REAL-WORLD CASE STUDY IN THE

INTERNET DOMAIN AND FOUR WIDELY USED NP-HARD BENCHMARK
MILPS.

Problem Scale Setting
Runing Time

Setting
Target Value

SC
(Minimize)

SC1 2000s 17121.5
SC2 12000s 166756.0
SC3 80000s 2013187.3

MVC
(Minimize)

MVC1 2000s 27337.8
MVC2 8000s 273014.6
MVC3 80000s 2739485.6

MIS
(Maximize)

MIS1 2000s 22621.7
MIS2 8000s 227074.5
MIS3 80000s 2247227.5

MIKS
(Maximize)

MIKS1 2000s 35067.8
MIKS2 12000s 355887.6
MIKS3 60000s 3306566.1

Case
(Maximize) Case Study 1000s 944086.4

m constraints, we generated a random problem with n items
and m sets where each set bid includes 4 items. For the Mixed
Integer Knapsack Set (MIKS) with n decision variables and m
constraints, we generated a random problem with n items and
m dimension where each dimension includes 4 items and at
least half of the items have integer constraints. For the optimal
solution in the training data set, we allowed Gurobi to run for
8 hours to find the approximate optimal solution. The decision
variables and constraint scale of one case study in the internet
domain and four widely used NP-hard benchmark MILPs are
shown in Table I, where SC denotes the Set Covering problem.
MVC denotes the Minimum Vertex Covering problem. MIS
denotes the Maximum Independent Set problem. MIKS de-
notes the Mixed Integer Knapsack Set problem. Case denotes
the real-world case study.

2) Baseline Approaches: In this paper, two types of base-
line approaches are employed. One type is the mainstream
ML-based optimization framework based on GNN&GBDT
(GBDT) [12] and the latest ML-based optimization frame-
work Light-MILPopt (MILP) [3]. The other type of baseline
approaches are the state-of-the-art MILP solvers, including
SCIP(4.3.0) [36], CPLEX(22.1.1.0) [37] and Gurobi(10.0.1)
[38]. Their scale-constrained versions are used as lightweight
optimizerr for both the proposed framework and the latest ML-
based optimization framework.

3) Environment: All the experiments were run on a PC
with an Intel Xeon Platinum 8375C @ 2.90GHz CPU and
four NVIDIA TESLA V100(32G) GPUs. Each scale of any
Benchmark MILP was tested on five different instances, and
the results shown are the average of the five results. To
verify the effectiveness and efficiency of the proposed Light-
EvoOPT, we not only compare the results obtained at the
same fixed execution time, but we also compare the execution
time required with a fixed target objective function value. The
settings of the fixed execution time and of the fixed target
objective function value for each MILP are shown in Table II.

B. Comparisons of Solution Effectiveness

Before delving into detailed comparisons of solution effec-
tiveness, we first summarize the overall experimental trends
observed. As shown in Table III, the performance of various
solvers and frameworks, including traditional solvers (e.g.,
SCIP, Gurobi, and CPLEX) and learning-based methods (e.g.,
GNN&GBDT and Light-MILPopt), is compared. Our pro-
posed Light-EvoOPT framework, represented by two versions,
Ours (without pruning) and OursP (with pruning), consistently
achieves superior or comparable results. The learning-based
methods’ results reflect their best performance, achieved by
leveraging lightweight optimizers and parameters tuning, en-
suring fair comparisons under the same execution time.

The experimental results demonstrate that Light-EvoOPT–
particularly, the pruned variant, OursP–delivers high-quality
solutions across diverse problem types and scales. Specifically,
compared to traditional solvers such as SCIP, Gurobi, and
CPLEX, Light-EvoOPT outperforms them on most problem
instances, especially in large-scale cases where traditional
solvers often face scalability challenges. Light-EvoOPT main-
tains computational efficiency and produces better solutions
within the same execution time, highlighting its superior
scalability. When compared to other learning-based methods
like GNN&GBDT and Light-MILPopt, Light-EvoOPT also
demonstrates significant advantages for more complex prob-
lem instances. OursP generally outperforms Ours in larger
problems, where pruning streamlines optimization without
sacrificing accuracy.

To further verify the effectiveness of Light-EvoOPT, we
compared its results with respect to those of SCIP, Gurobi,
GNN&GBDT, and Light-MILPopt under the same execution
times. Light-EvoOPT employs a lightweight optimizer, lim-
iting the variable proportion α to 30% and 50%, and uses
only 0.1% of the size of ultra-large-scale benchmark MILPs
as training data. The experimental results, shown in Tables IV
and V, indicate that Ours-30%G (Light-EvoOPT with Gurobi,
α = 30%, no pruning) and OursP-30%G (with pruning) sig-
nificantly outperform SCIP and Gurobi. For instance, in large-
scale Set Covering (SC) problems, Light-EvoOPT achieves a
clear advantage, while Gurobi and SCIP struggle with scalabil-
ity. Similarly, Light-EvoOPT outperforms GNN&GBDT and
Light-MILPopt in Minimum Vertex Cover (MVC) and Max-
imum Independent Set (MIS) problems, where GNN&GBDT
often fails to handle large-scale instances efficiently.

Light-EvoOPT also proves advantageous compared to
Light-MILPopt, achieving further improvements in most prob-
lems within fixed solution times. Remarkably, the pruned
variant OursP achieves nearly identical or better performance
compared to Ours, despite removing 20% of its network
parameters. The lighter network structure in OursP further
enhances efficiency and scalability, enabling it to outperform
Ours on most large-scale and ultra-large-scale test problems.

The superior performance of Light-EvoOPT can be at-
tributed to several key factors. First, its architecture focuses
computational resources on the most critical problem compo-
nents through constraint reduction and small-scale subgraph
division. For example, in SC problems, reducing constraints

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 11

TABLE III
COMPARISON OF OBJECTIVE VALUE RESULTS WITH BASELINE APPROACHES USING THE SAME EXECUTION TIME. AN UPWARD ARROW (↑) INDICATES

THAT THE RESULT IS BETTER THAN THE BASELINE. A DASH (-) INDICATES THAT NO FEASIBLE SOLUTION WAS FOUND. AN ASTERISK (*) INDICATES AN
OUT-OF-MEMORY OR OUT-OF-GPU-MEMORY ERROR DURING TRAINING. Boldface IS USED TO DENOTE THE BEST RESULTS.

SCIP Gurobi CPLEX GBDT MILP Ours OursP
SC1 25191.2 17934.5 16442.2 16728.8 16108.1 15886.3↑ 15888.2↑
SC2 385708.4 320240.4 164889.6 252797.2 160015.5 159367.1↑ 159309.1↑
SC3 9190301.1 3198747.6 9155020.6 * 1603278.9 1596880.3↑ 1596075.7↑

MVC1 31275.4 28151.3 27645.3 27107.9 26950.7 26845.8↑ 26842.0↑
MVC2 491042.9 283555.8 278194.1 271777.2 269571.5 269129.6↑ 269216.4↑
MVC3 4909318.0 2834161.3 5000068.0 * 2694126.4 2692249.4↑ 2690273.6↑
MIS1 18649.6 21789.0 21260.4 22795.7 22966.5 23082.7↑ 23088.5↑
MIS2 9104.3 216591.3 210089.5 227006.4 230432.9 231033.7↑ 230977.8↑
MIS3 90750.0 2165906.7 2100795.6 * 2299504.6 2308329.3↑ 2307663.9↑

MIKS1 29974.7 32960.0 32787.4 - 36125.5 36347.8↑ 36370.9↑
MIKS2 168289.9 329642.4 320604.2 - 362265.1 363238.9↑ 363225.7↑
MIKS3 919031.1 3229713.4 0.0 - 3515173.0 3621878.0↑ 3622450.3↑

Case 924954.5 - 898538.3 - 980688.0 981748.3↑ 982274.8↑

TABLE IV
COMPARISON OF OBJECTIVE VALUE RESULTS WITH BASELINE APPROACHES USING THE SAME EXECUTION TIME ADOPTING GUROBI AS THE

LIGHTWEIGHT OPTIMIZER. Boldface IS USED TO DENOTE THE BEST RESULTS.

GBDT-30%G MILP-30%G Ours-30%G OursP-30%G GBDT-50%G MILP-50%G Ours-50%G OursP-50%G Gurobi
SC1 18487.6 17047.3 16127.2↑ 16125.6↑ 17503.4 16108.1 15886.3↑ 15888.2↑ 17934.5
SC2 281021.2 163975.9 162082.0↑ 161758.3↑ 252797.2 160015.5 159367.1↑ 159311.6↑ 320240.4
SC3 * 1667157.9 1633930.3↑ 1628124.9↑ * 1603278.9 1596880.3↑ 1596075.7↑ 3198747.6

MVC1 27700.8 27223.3 27097.3↑ 27078.5↑ 27329.9 26950.7 26845.8↑ 26842.0↑ 28151.3
MVC2 281234.5 272579.5 271539.7↑ 271610.2↑ 274600.8 269571.5 269129.6↑ 269216.4↑ 283555.8
MVC3 * 2724414.7 2714601.2↑ 2715561.3↑ * 2694126.4 2692249.4↑ 2690273.6↑ 2834161.3
MIS1 22115.9 22658.0 22842.9↑ 22850.7↑ 22530.1 22966.5 23082.7↑ 23088.5↑ 21789.0
MIS2 210019.2 227305.4 228714.3↑ 228444.6↑ 215393.6 230432.9 231033.7↑ 230977.8↑ 216591.3
MIS3 * 2267990.8 2286245.8↑ 2281966.2↑ * 2299504.6 2308329.3↑ 2307663.9↑ 2165906.7

MIKS1 - 35533.4 36039.5↑ 36105.6↑ - 36108.2 36347.8↑ 36370.9↑ 32960.0
MIKS2 - 357439.5 358346.6↑ 360230.3↑ - 362265.1 363238.9↑ 363225.7↑ 329642.4
MIKS3 - 3505202.2 3565188.2↑ 3567503.8↑ - 3515173.0 3621878.0↑ 3622450.3↑ 3229713.4

Case - 979797.8 979898.8↑ 979898.8↑ - 980688.0 981748.3↑ 982274.8↑ -

TABLE V
COMPARISON OF OBJECTIVE VALUE RESULTS WITH BASELINE APPROACHES USING THE SAME EXECUTION TIME ADOPTING SCIP AS THE LIGHTWEIGHT

OPTIMIZER. Boldface IS USED TO DENOTE THE BEST RESULTS.

GBDT-30%S MILP-30%S Ours-30%S OursP-30%S GBDT-50%S MILP-50%S Ours-50%S OursP-50%S SCIP
SC1 17222.2 17121.5 16184.8↑ 16156.0↑ 16728.8 16147.2 15943.7↑ 15931.4↑ 25191.2
SC2 261174.0 166756.0 162716.5↑ 164383.2↑ 268294.9 166966.9 163992.4↑ 159309.1↑ 385708.4
SC3 * 2013187.3 1703925.6↑ 1701251.7↑ * 2143953.6 1712892.2↑ 1688015.2↑ 9190301.1

MVC1 27515.4 27337.8 27103.7↑ 27093.7↑ 27107.9 26956.8 26849.3↑ 26849.5↑ 31275.4
MVC2 276306.9 273014.6 271855.9↑ 272358.0↑ 271777.2 269771.3 269300.4↑ 269438.1↑ 491042.9
MVC3 * 2739485.6 2720567.2↑ 2718868.0↑ * 2743856.4 2697426.5↑ 2693109.8↑ 4909318.0
MIS1 22389.3 22621.7 22843.4↑ 22848.6↑ 22795.7 22963.6 23073.7↑ 23082.9↑ 18649.6
MIS2 223349.8 227074.5 228386.5↑ 228322.2↑ 227006.4 230278.1 230861.0↑ 230567.8↑ 9104.3
MIS3 * 2247227.5 2282112.1↑ 2279376.9↑ * 2249585.2 2306204.4↑ 2306699.5↑ 90750.0

MIKS1 - 35067.8 35998.3↑ 36004.2↑ - 36125.5 36333.0↑ 36338.2↑ 29974.7
MIKS2 - 355887.6 356921.2↑ 359686.4↑ - 357483.8 362395.9↑ 363012.4↑ 168289.9
MIKS3 - 3410694.6 3428798.2↑ 3456219.4↑ - 3306566.1 3394443.9↑ 3434767.9↑ 919031.1

Case - 944086.4 944217.6↑ 982247.2↑ - 944166.1 944240.1↑ 981977.9↑ 924954.5

cuts the time per optimization iteration to one-fifth of the orig-
inal. Second, small-scale subgraphs improve generalization to
larger, more complex problems by leveraging patterns from
smaller instances. Finally, network pruning in OursP reduces
computational overhead, simplifying the network without
sacrificing solution quality. This balance between efficiency
and accuracy underpins Light-EvoOPT’s strong performance
across diverse benchmarks.

In summary, Light-EvoOPT, and particularly its pruned
variant OursP, shows exceptional scalability and efficiency in
solving large-scale MILPs, maintaining a substantial lead over
traditional solvers and learning-based methods.

C. Comparisons of Solution Efficiency

To further validate the efficiency of the Light-EvoOPT, we
compare the running time of the proposed framework with
respect to that of the baseline algorithms with fixed-solving
results in medium-scale and large-scale test problems. Our
experimental results are shown in Table IV (using a scale-
constrained version of Gurobi as the lightweight optimizer)
and Table V (using a scale-constrained version of SCIP as
the lightweight optimizer). It is evident that Light-EvoOPT
significantly reduces the time required to obtain the same
optimization results compared to all the baseline approaches
on all MILPs.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 12

TABLE VI
COMPARISON OF EXECUTION TIMES UNDER THE SAME TARGET VALUE ADOPTING GUROBI AS THE LIGHTWEIGHT OPTIMIZER UNDER THE TARGET

SOLUTION. A GREATER-THAN SYMBOL (>) INDICATES THE INABILITY TO ACHIEVE THE TARGET OBJECTIVE FUNCTION IN SOME INSTANCES WITHIN
THE MAXIMUM RUNNING TIME. Boldface IS USED TO DENOTE THE BEST RESULTS.

GBDT-30%G MILP-30%G Ours-30%G OursP-30%G GBDT-50%G MILP-50%G Ours-50%G OursP-50%G Gurobi
SC1 >30347.8s 1166.8s 218.0s↑ 194.1s↑ 5041.6s 177.8s 116.0s↑ 103.8s↑ >60000s
SC2 >60000s 5645.0s 4459.1s↑ 2912.8s↑ >60000s 1795.4s 1300.1s↑ 1299.1s↑ >60000s
SC3 * 14787.3s 13720.4s↑ 14345.7s↑ * 10164.0s 10677.5s 9581.4s↑ >80000s

MVC1 >60000s 1475.3s 417.3s↑ 342.5s↑ 29320.5s 193.8s 138.0s↑ 172.0s↑ >60000s
MVC2 >60000s 6453.3s 4020.9s↑ 4261.0s↑ 21397.3s 1503.3s 1164.2s↑ 1460.5s↑ >60000s
MVC3 * 43687.1s 30912.8s↑ 37392.2s↑ * 13896.6s 12652.1s↑ 13379.5s↑ >80000s
MIS1 >60000s 1487.3s 413.4s↑ 396.6s↑ 4227.1s 223.5s 124.7s↑ 62.5s↑ >60000s
MIS2 >60000s 7250.5s 3663.2s↑ 4307.3s↑ 27952.9s 2062.7s 1190.2s↑ 1288.9s↑ >60000s
MIS3 * 46518.7s 23488.7s↑ 28306.9s↑ * 43748.0s 15163.2s↑ 17688.0s↑ >80000s

MIKS1 - 593.9s 238.1s↑ 221.3s↑ - 160.5s 117.2s↑ 121.6s↑ >60000s
MIKS2 - 7941.9s 7408.6s↑ 3834.2s↑ - 2137.8s 1800.5s↑ 1768.4s↑ >60000s
MIKS3 - 25735.3s 24788.1s↑ 17579.6s↑ - 17976.7s 14023.6s↑ 10882.5s↑ >60000s

Case - 511.5s 568.6s 555.6s - 506.9s 476.6s↑ 542.2s 2584.7s

TABLE VII
COMPARISON OF EXECUTION TIMES UNDER THE SAME TARGET VALUE ADOPTING SCIP AS THE LIGHTWEIGHT OPTIMIZER UNDER THE TARGET

SOLUTION. Boldface IS USED TO DENOTE THE BEST RESULTS.

GBDT-30%S MILP-30%S Ours-30%S OursP-30%S GBDT-50%S MILP-50%S Ours-50%S OursP-50%S SCIP
SC1 >48369.2s 1998.1s 285.7s↑ 233.5s↑ 587.6s 352.2s 223.5s↑ 191.1s↑ >60000s
SC2 >60000s 11823.0s 4788.9s↑ 8471.0s↑ 297.6s 11441.3s 9183.3s↑ 7851.1s↑ >60000s
SC3 * 73126.5s 19269.6s↑ 23902.9s↑ * >80000s 30584.5s↑ 19498.6s↑ >80000s

MVC1 >60000s 1951.6s 461.7s↑ 404.8s↑ 297.6s 203.1s 142.8s↑ 124.1s↑ >60000s
MVC2 >60000s 7967.2s 4764.4s↑ 6412.9s↑ 7570.5s 1815.3s 1418.72s↑ 2159.5s >60000s
MVC3 * 78018.4s 40892.9s↑ 36067.2s↑ * >80000s 17209.2s↑ 16543.8s↑ >80000s
MIS1 >60000s 1951.6s 467.8s↑ 463.2s↑ 348.6s 225.9s 143.2s↑ 65.2s↑ >60000s
MIS2 >60000s 7967.2s 4419.4s↑ 4561.3s↑ 5920.7s 1945.7s 1405.5s↑ 3029.1s↑ >60000s
MIS3 * 81048.4s 29329.2s↑ 31373.2s↑ * 74536.7s 14723.5s↑ 14454.8s↑ >80000s

MIKS1 - 1982.0s 288.5s↑ 258.9s↑ - 194.9s 170.7s↑ 136.4s↑ >60000s
MIKS2 - 11980.4s 10911.7s↑ 4770.0s↑ - 9576.1s 7055.9s↑ 2130.6s↑ >60000s
MIKS3 - 37384.1s 40764.8s 33675.5s↑ - 63558.0s 50200.0s↑ 36751.7s↑ >60000s

Case - 996.4s 937.8s↑ 544.2s↑ - 776.2s 937.4s 559.2s↑ 3097.0s

Specifically, compared to the large-scale baseline solvers,
the proposed framework can achieve the same results in only
0.5% of the time for the benchmark MILPs, including SC1,
MVC1, MIS1 and MIKS1. Even more surprisingly, on the
MIS1, Light-EvoOPT only using a scale-limited version solver
with variable proportion α = 50% can achieve the same
results as the state-of-the-art solver using only 0.1% of the
time. Compared to the ML-based frameworks GNN&GBDT,
our Light-EvoOPT can save more than 95% of the solution
time on most MILPs to achieve the same results. On more
than half of the benchmark MILPs, our Light-EvoOPT can
save even more than 99% of the running time. Even when
compared with the latest Light-MILPopt framework, although
Light-EvoOPT and Light-MILPopt did not pull apart in the
previous section’s comparison, Light-EvoOPT can save more
than 50% of the solution time on most MILPs to achieve the
same results in most of the benchmark MILPs. It is interesting
to note this fact for MVC1 and MIS1. Additionally, although
there is little difference among all methods in achieving the
same optimization results within a specific time frame, there
is a significant difference in their execution times to achieve
a target value. We can also clearly see that the improvement
in efficiency by introducing model pruning is very substantial,
and even with only 20% of the model parameters subtracted.
The pruned Light-EvoOPT achieves the best results by being
more efficient than the original model on most problems.

This dramatic reduction in solution time is primarily due to

the ability of Light-EvoOPT to effectively simplify the prob-
lem through variable and constraint reduction. By focusing on
a limited but critical subset of variables, Light-EvoOPT avoids
the exponential growth in complexity that typically hampers
traditional solvers like SCIP and Gurobi when dealing with
large-scale MILPs. For example, in problems like MIS1, Light-
EvoOPT achieves the target result in just 0.1% of the time
required by Gurobi, demonstrating its exceptional efficiency
in navigating the solution space with minimal computational
burden. Furthermore, Light-EvoOPT’s efficiency advantage
over ML-based frameworks such as GNN&GBDT and Light-
MILPopt is particularly remarkable. The lightweight opti-
mizer, combined with the model pruning techniques, sig-
nificantly reduces computational overhead while maintaining
high solution quality. This is particularly evident in problems
like MVC1 and MIS1, where Light-EvoOPT achieves the
same results as Light-MILPopt yet in less than half the time,
showcasing its superior ability to balance computational effi-
ciency with optimization precision. Finally, the use of network
pruning further amplifies the efficiency gains. By pruning 20%
of the model parameters, the pruned Light-EvoOPT not only
retains comparable accuracy but also reduces computation
time dramatically. This is particularly beneficial for large-
scale problems where the lighter network structure enables
faster convergence. In cases like MIKS3, the pruned version
of Light-EvoOPT consistently outperforms the original model
in terms of efficiency, highlighting the importance of pruning

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 13

Fig. 7. Time-objective figure for the benchmark MLIPs. (SC1, SC2) The minimized SC problem. (MVC1, MVC2) The minimized MVC problem. (MIS1,
MIS2) The maximized MIS problem. (MIKS1, MIKS2) The maximized MIKS problem. The x-axis represents the optimization time (seconds), and the y-axis
represents the objective values for the corresponding problems.

in enhancing the scalability and speed of the framework.

D. Analysis of Convergence

Convergence is an essential metric for evaluating the per-
formance of optimization frameworks. To analyze the conver-
gence of Light-EvoOPT, we record the trend of the objective
value with the iteration time of the proposed framework
and of the baseline algorithm on four standard benchmark
MILPs, including SC, MVC, MIS and MIKS. The time-
objective variation is visualized in Figure 7. We can see
that the proposed framework can obtain high-quality solutions
for large-scale MILPs with only small-scale training data
and a lightweight optimizer. Figure 7 also illustrates that the
convergence performance of Light-EvoPOT is not weaker than
that of the state-of-the-art solver Gurobi as well as that of the
state-of-the-art ML-based optimization framework.

The convergence performance of Light-EvoOPT is particu-
larly impressive when considering that it operates on small-
scale training data and uses a lightweight optimizer. This al-
lows the framework to outperform or match the performance of
more resource-intensive solvers such as Gurobi and ML-based
frameworks like GBDT, which typically require extensive data
preparation and training. As shown in Figure 7, for problems
such as SC1, MVC1, and MIS1, Light-EvoOPT converges
rapidly, reaching near-optimal solutions in fewer iterations
compared to GBDT and even Gurobi. This rapid convergence
highlights the effectiveness of the problem simplifications and
variable reductions employed by Light-EvoOPT, which allows
it to focus its computational effort on the most critical aspects
of the MILP. Moreover, the stability of the convergence curves
across different problem types further underscores the robust-
ness of Light-EvoOPT. In problems like SC2 and MIKS2,
the framework consistently achieves a smooth and steady

reduction in the objective value, unlike some of the baseline
methods (e.g., GBDT-30%G), which show erratic jumps or
plateaus during the optimization process. This suggests that
Light-EvoOPT is less prone to getting stuck in local optima
or experiencing sudden increases in computational complexity,
making it a more reliable choice for large-scale optimization
problems.

Another key strength of Light-EvoOPT is its efficiency in
handling complex constraints, as demonstrated in the MIKS
problems. The framework quickly converges to high-quality
solutions even in cases where the constraints are more intricate
and difficult to satisfy. This is especially evident in MIKS1,
where Light-EvoOPT outperforms Gurobi in terms of both
convergence speed and final objective value. The ability to
handle complex constraints efficiently is a direct result of
Light-EvoOPT’s architecture, which effectively balances com-
putational effort between constraint satisfaction and objective
optimization. Finally, the OursP variant, which incorporates
network pruning, further enhances convergence performance.
By reducing the number of parameters after initial training, the
pruned model becomes more streamlined, allowing for faster
convergence without sacrificing solution quality. In Figure 7,
this is clearly seen in problems like MVC2 and MIS2, where
the pruned model (OursP) consistently converges faster than
the unpruned version (Ours), while maintaining comparable
objective values. This demonstrates that network pruning not
only improves computational efficiency but also accelerates
the optimization process, making Light-EvoOPT an even more
powerful tool for large-scale MILPs.

E. Analysis of Training Efficiency

Table VIII provides a comparison of training times for ML-
based methods across key stages, including data preparation,

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 14

TABLE VIII
AVERAGE TRAINING TIMES FOR DIFFERENT ML-BASED METHODS WHEN

SOLVING LARGE-SCALE PROBLEMS

Stage GBDT MILP Ours OursP
Data Preparation 308060s 20100s 20100s 20100s
GNN Training 25271s 229s 365s 365s

GBDT Training 45749s - - -
Pruning - - - 101s

Total Time 379080s 20329s 20465s 20566s

network training, and pruning (for OursP). The results show
that Light-EvoOPT, in both its original (Ours) and pruned
(OursP) forms, achieves significantly reduced training times
compared to GBDT. This efficiency is primarily due to Light-
EvoOPT’s ability to generalize from small-scale problem
instances, which minimizes data preparation requirements and
reduces overall training time.

GBDT’s training process requires over 379,000 seconds,
largely due to its extensive data preparation phase, which
scales with the size of the target problem. In contrast, Light-
EvoOPT maintains a total training time of just over 20,000
seconds, comparable to the MILPopt framework. Remarkably,
the pruning process in OursP introduces only 101 additional
seconds, a negligible overhead, while improving model effi-
ciency and maintaining high performance. This highlights the
practicality of OursP, as it achieves similar or better results
with a lighter network and minimal retraining effort. The
scalability of Light-EvoOPT is further underscored by its
minimal GNN training time (365 seconds), which is orders of
magnitude faster than GBDT’s data preparation and training.
This efficiency is particularly advantageous for large-scale
problems with millions of decision variables and constraints,
as the training time remains manageable even as problem size
grows.

In summary, Light-EvoOPT, especially its pruned variant
OursP, provides a clear advantage in training efficiency over
GBDT and other ML-based methods. Its ability to generalize
from small-scale data and leverage efficient pruning ensures
competitive performance while keeping training times low,
making it a scalable and practical option for solving large-
scale optimization problems.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes Light-EvoOPT, a lightweight opti-
mization framework for large-scale MILPs, and further ex-
plores the important role of model pruning for AI4Optimize.
Light-EvoOPT uses graph partition-based problem division
and EGAT with half-convolutions to efficiently predict ini-
tial MILP solutions with only a lightweight training dataset.
Through variables and constraints reduction, Light-EvoOPT
rapidly updates the current solution with a lightweight opti-
mizer. Experimental evaluations on four standard large-scale
MILPs and a real-world case study show that our framework
outperforms SCIP, Gurobi, the GNN&GBDT-based optimiza-
tion framework, and Light-MILPopt.

Despite its promising results, Light-EvoOPT has some
limitations. Firstly, the framework requires a large amount of
small-scale training data, which could be impractical in certain

scenarios. Secondly, it is currently limited to solving linear
problems and cannot handle nonlinear constraints. Finally,
the framework’s ability to generalize is restricted to solving
problems that are homogeneous with the training data, as
it lacks the capability to generalize to significantly different
problem types using the same network parameters. As part of
our future work, we aim to address these limitations. We plan
to develop data generators to produce synthetic examples for
data augmentation, enhancing the training set. Additionally,
we will explore the use of hypergraph structures to extend the
framework’s applicability to nonlinear problems. Finally, we
intend to introduce larger network architectures and leverage
pre-training techniques to improve generalization capabilities,
ultimately creating a base model that can be applied to a
broader range of problems.

VI. ACKNOWLEDGMENTS

A preliminary conference version of this paper appeared in
ICLR 2024 [3].

REFERENCES

[1] L. A. Wolsey, Integer Programming. John Wiley & Sons, 2020.
[2] M. I. A. Shekeew and B. Venkatesh, “Learning-assisted variables reduc-

tion method for large-scale milp unit commitment,” IEEE Open Access
Journal of Power and Energy, vol. 10, pp. 245–258, 2023.

[3] H. Ye, H. Xu, and H. Wang, “Light-milpopt: Solving large-scale mixed
integer linear programs with lightweight optimizer and small-scale
training dataset,” in The Twelfth International Conference on Learning
Representations, 2024.

[4] Z. Guo, C. S. Lai, P. Luk, and X. Zhang, “Techno-economic assessment
of wireless charging systems for airport electric shuttle buses,” Journal
of Energy Storage, vol. 64, p. 107123, 2023.

[5] Q. Han, L. Yang, Q. Chen, X. Zhou, D. Zhang, A. Wang, R. Sun, and
X. Luo, “A gnn-guided predict-and-search framework for mixed-integer
linear programming,” arXiv preprint arXiv:2302.05636, 2023.

[6] K. Deb, P. Fleming, Y. Jin, K. Miettinen, and P. M. Reed, “Key issues
in real-world applications of many-objective optimisation and decision
analysis,” in Many-Criteria Optimization and Decision Analysis: State-
of-the-Art, Present Challenges, and Future Perspectives. Springer,
2023, pp. 29–57.

[7] M. Gasse, D. Chételat, N. Ferroni, L. Charlin, and A. Lodi, “Exact
combinatorial optimization with graph convolutional neural networks,”
Advances in Neural Information Processing Systems, vol. 32, 2019.

[8] E. L. Lawler and D. E. Wood, “Branch-and-bound methods: A survey,”
Operations Research, vol. 14, no. 4, pp. 699–719, 1966.

[9] S. Boyd and J. Mattingley, “Branch and bound methods,” Notes for
EE364b, Stanford University, vol. 2006, p. 07, 2007.

[10] V. Nair, S. Bartunov, F. Gimeno, I. Von Glehn, P. Lichocki, I. Lobov,
B. O’Donoghue, N. Sonnerat, C. Tjandraatmadja, P. Wang et al.,
“Solving mixed integer programs using neural networks,” arXiv preprint
arXiv:2012.13349, 2020.

[11] N. Sonnerat, P. Wang, I. Ktena, S. Bartunov, and V. Nair, “Learning a
large neighborhood search algorithm for mixed integer programs,” arXiv
preprint arXiv:2107.10201, 2021.

[12] H. Ye, H. Xu, H. Wang, C. Wang, and Y. Jiang, “Gnn&gbdt-guided
fast optimizing framework for large-scale integer programming,” in
International Conference on Machine Learning. PMLR, 2023, pp.
39 864–39 878.

[13] T. Achterberg, “Constraint integer programming,” 2007.
[14] A. Schrijver, Theory of Linear and Integer Programming. John Wiley

& Sons, 1998.
[15] M. G. Bailey and B. E. Gillett, “Parametric integer programming

analysis: A contraction approach,” Journal of the Operational Research
Society, vol. 31, no. 3, pp. 257–262, 1980.

[16] K. G. Murty and F.-T. Yu, Linear Complementarity, Linear and Nonlin-
ear Programming. Citeseer, 1988, vol. 3.

[17] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 15

[18] T. Yoon, “Confidence threshold neural diving,” arXiv preprint
arXiv:2202.07506, 2022.

[19] L. Gong and Q. Cheng, “Exploiting edge features for graph neural
networks,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 9211–9219.

[20] J. Xu, Z. Li, B. Du, M. Zhang, and J. Liu, “Reluplex made more
practical: Leaky relu,” in 2020 IEEE Symposium on Computers and
Communications (ISCC). IEEE, 2020, pp. 1–7.

[21] R. Zass and A. Shashua, “Doubly stochastic normalization for spectral
clustering,” Advances in Neural Information Processing Systems, vol. 19,
2006.

[22] J. O. Neill, “An overview of neural network compression,” arXiv preprint
arXiv:2006.03669, 2020.

[23] J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime neural pruning,” Advances
in Neural Information Processing Systems, vol. 30, 2017.

[24] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[25] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, “Fennel:
Streaming graph partitioning for massive scale graphs,” in Proceedings
of the 7th ACM International Conference on Web Search and Data
Mining, 2014, pp. 333–342.

[26] Z. Chen, J. Liu, X. Wang, and W. Yin, “On representing linear programs
by graph neural networks,” in The Eleventh International Conference on
Learning Representations, 2023.

[27] C. Shen, Q. Wang, and C. E. Priebe, “One-hot graph encoder embed-
ding,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 45, no. 6, pp. 7933–7938, 2022.

[28] Y. Geifman and R. El-Yaniv, “Selectivenet: A deep neural network with
an integrated reject option,” in International Conference on Machine
Learning. PMLR, 2019, pp. 2151–2159.

[29] T.-Y. Lin, P. Goyal, R. B. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 2980–2988.

[30] T. P. Runarsson and X. Yao, “Search biases in constrained evolutionary
optimization,” IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), vol. 35, no. 2, pp. 233–243, 2005.

[31] H. Ye, H. Wang, H. Xu, C. Wang, and Y. Jiang, “Adaptive constraint
partition based optimization framework for large-scale integer linear
programming (student abstract),” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 37, no. 13, 2023, pp. 16 376–16 377.

[32] A. Caprara, P. Toth, and M. Fischetti, “Algorithms for the set covering
problem,” Annals of Operations Research, vol. 98, no. 1, pp. 353–371,
2000.

[33] I. Dinur and S. Safra, “On the hardness of approximating minimum
vertex cover,” Annals of Mathematics, pp. 439–485, 2005.

[34] R. E. Tarjan and A. E. Trojanowski, “Finding a maximum independent
set,” SIAM Journal on Computing, vol. 6, no. 3, pp. 537–546, 1977.

[35] A. Atamtürk, “On the facets of the mixed-integer knapsack polyhedron,”
Mathematical Programming, vol. 98, no. 1, pp. 145–175, 2003.

[36] T. Achterberg, “Scip: Solving constraint integer programs,” Mathemati-
cal Programming Computation, vol. 1, pp. 1–41, 2009.

[37] CPLEX User’s Manual, “Ibm ilog cplex optimization studio,” Version,
vol. 12, no. 1987-2018, p. 1, 1987.

[38] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2023. [Online]. Available: https://www.gurobi.com

Huigen Ye (Student Member, IEEE) received the
B.S. degree from School of Computer Science and
Engineering, Sun Yat-sen University in 2023. He
is currently pursuing his Ph.D degree in State Key
Laboratory of Intelligent Technology and Systems,
Department of Computer Science and Technology,
Tsinghua University. His research focuses on large-
scale optimization, aiming to solve complex real-
world problems by leveraging machine learning
techniques to improve computational efficiency.

Hua Xu (Member, IEEE) is currently a tenured
associate professor in the Department of Computer
Science at Tsinghua University. His primary research
focuses on intelligent optimization and human-
machine natural interaction in the field of artificial
intelligence, leveraging research platforms such as
the National Research Center for Information Sci-
ence and Technology in Beijing. He has authored
30 top international conference papers as the first
or corresponding author and 50 high-impact SCI
international journal papers (35 in the first quartile,

with 40 having an impact factor >5.0 and 2 highly cited in ESI), accumulating
2000 SCI citations and 8700 Google Scholar citations. Additionally, Dr. Xu
has authored 4 textbooks and 10 academic monographs, such as Intelligent
Evolutionary Optimization (Elsevier, 2024), Multi-modal Sentiment Analysis
(Springer, 2023) and Intent Recognition for Human Machine Interactions
(Springer, 2023). He holds 36 granted patents for inventions and 26 granted
software copyrights. His contributions have been cited in top journals such
as ACM Comput. Surv, with citations from 6 domestic and international
academicians and over 30 IEEE Fellows. Dr. Xu has been invited to serve as
the editor-in-chief of Elsevier’s international journals Intell. Syst. Appl. and
associate editor of Expert Syst. Appl. (1st quartile, SCI IF=8.665). He has
previously been honored with a National Science and Technology Progress
Award (Second Class), a Beijing Science and Technology Award (First Class),
two Industry Association Science and Technology Awards (First Class), and
three second and third-class awards at the provincial and ministerial levels.

Carlos A. Coello Coello (Fellow, IEEE) received
the Ph.D. degree in computer science from Tulane
University, New Orleans, LA, USA, in 1996. He is
a Professor (CINVESTAV-3F Researcher) with the
Department of Computer Science of CINVESTAV-
IPN, Mexico City, Mexico. He has authored and
coauthored over 550 technical papers and book chap-
ters. He has also coauthored the book Evolutionary
Algorithms for Solving Multi-Objective Problems
(Second Edition, Springer, 2007). His publications
currently report over 77,600 citations in Google

Scholar (his H-index is 106). His research interests include evo- lutionary
multiobjective optimization and constraint-handling techniques for evolution-
ary algorithms.

