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Abstract

Mixed-integer linear programming (MILP) is a cornerstone of op-
timization with applications across numerous domains. However,
the development and evaluation of MILP-solving algorithms are
hindered by existing benchmark datasets, which are often limited
in scale, lack diversity, and are poorly structured, making them in-
adequate for systematic testing across different solving approaches,
especially for machine learning (ML)-based methods. To address
these issues, we introduce MILPBench, a large-scale benchmark
suite comprising 100,000 MILP instances organized into 60 well-
categorized classes. Using structural properties and embedding
similarity metrics, we developed a novel classification framework
to ensure both intra-class homogeneity and inter-class diversity.
In addition to the dataset, MILPBench includes a comprehensive
baseline library featuring 15 mainstream solving methods, span-
ning traditional solvers, heuristic algorithms, and ML-based ap-
proaches. This design enables rigorous and standardized evaluation
of MILP-solving algorithms under diverse conditions. Extensive
benchmarking demonstrates the utility of MILPBench as a scal-
able and versatile testbed for advancing MILP research, fostering
innovation in solver development, and bridging the gap between
optimization and machine learning.
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1 Introduction

Mixed-integer linear programming (MILP) is a cornerstone of op-
timization, widely applied in fields such as routing, scheduling,
network design, and resource allocation [7, 33, 36, 40, 46, 48, 51, 54,
56, 59, 67, 83]. MILP involves optimizing a linear objective func-
tion under constraints with both integer and continuous variables
[75, 76], providing solutions to complex combinatorial problems.
Given its ubiquity and importance, advancing algorithmic efficiency
for solving MILPs is critical for addressing real-world challenges.

Traditional MILP solvers can broadly be categorized into exact
algorithms and heuristic approaches [82]. Exact methods, such
as branch-and-bound [5, 45, 81], include techniques like pseudo-cost
branching [16, 55], strong branching [4, 29], and hybrid branching
[3, 73]. Heuristic methods, on the other hand, focus on approximate
solutions, leveraging techniques such as feasibility pumps [17, 32],
evolutionary algorithms [60, 68], and large neighborhood search
[47, 63]. While these methods are highly effective, they often strug-
gle in scenarios requiring the repeated solution of homogeneous
MILP instances (i.e., problems with similar combinatorial struc-
tures). These scenarios expose traditional solvers to the challenge
of cold starts, as they are unable to exploit accumulated solving
knowledge to accelerate subsequent computations [62, 82].

In recent years, researchers have explored machine learning
(ML) to improve MILP-solving methods. Inspired by the bipartite
graph representation of MILP problems [35], neural networks— par-
ticularly graph neural networks (GNNs) [69]—have been employed
to enhance branch-and-bound decisions [21, 41, 42], neighborhood
selection [70, 71, 77], and heuristic initialization [30, 79, 80]. These
methods promise significant speedups and improved scalability.
However, despite their potential, progress has been hindered by
the lack of large-scale, systematically categorized benchmark
datasets. Existing datasets, such as MIPLIB [37], are limited in
size, diversity, and structural organization. Moreover, none of these
datasets provide a baseline library for standardized performance
comparison across traditional solvers, heuristic algorithms, and ML-
based approaches. This gap has slowed MILP solver development
and impeded rigorous comparisons under diverse conditions.

To address these challenges, we introduce MILPBench, the
largest MILP benchmark dataset to date, comprising 100,000 in-
stances across 60 systematically categorized classes. MILPBench
provides a diverse and comprehensive testbed for evaluating MILP-
solving algorithms. By leveraging structural similarity metrics and
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GNN-based embeddings, we ensure that MILPBench achieves intra-
class homogeneity and inter-class diversity, enabling robust evalu-
ations. In addition, MILPBench includes a baseline library featur-
ing 15 mainstream solving methods, spanning traditional solvers,
heuristic algorithms, and ML-based approaches, making it the first
dataset to offer such a complete evaluation framework. Experimen-
tal results demonstrate that MILPBench enables detailed perfor-
mance comparisons and reveals inconsistencies in some algorithm
claims, further underscoring its value as a standardized and scalable
testbed for MILP research.
In summary, MILPBench offers the following contributions:

(1) Largest-Scale Dataset: MILPBench is the largest MILP
benchmark dataset to date, comprising 100,000 instances
across 60 heterogeneous classes.

(2) Comprehensive Baseline Library: MILPBench provides
a standardized evaluation framework with 15 mainstream
solving methods, supporting traditional solvers, heuristic
algorithms, and ML-based approaches alike.

(3) Scalability and Adaptability: MILPBench offers a diverse
test suite with plans for regular updates, ensuring its rele-
vance for future research and applications.

By addressing the limitations of existing datasets, MILPBench
establishes a new standard for MILP benchmarking, facilitating
algorithm development and fostering innovation across both tradi-
tional and ML-based approaches. Our MILPBench is open-source
and accessible at: https://github.com/thuiar/MILPBench.

2 Related Work
2.1 Mixed Integer Linear Programming Problem

Mixed Integer Linear Programming (MILP) is a foundational class of
combinatorial optimization problems with extensive applications in
diverse fields, including logistics, robotics, and operations research.
Formally, a MILP problem can be defined as follows [75, 76]:

min ch, subject toAx < bl < x <u,x; € Zie€l, (1)
X

where x represents the decision variables, with dimension denoted
by n € Z, and I, u, ¢ € R" correspond to the lower bounds, upper
bounds, and coefficient values of the variables, respectively. The
matrix A € R™*" and the vector b € R define the linear con-
straints of the problem. The setI € {1,2,..., n} denotes the indices
of variables that are constrained to be integers.

2.2 Existing Methods for Solving MILP

Solving MILP problems effectively has been a long-standing chal-
lenge, leading to the development of various algorithmic approaches.
Traditional methods, including branch-and-bound, branch-and-cut,
and cutting-plane algorithms, guarantee optimal solutions but of-
ten suffer from scalability issues when dealing with large problem
instances. In contrast, heuristic approaches, such as genetic algo-
rithms, simulated annealing, and large neighborhood search, offer
faster solutions by sacrificing optimality. The availability of well-
organized test datasets is crucial for understanding the performance
of these methods across diverse scenarios, enabling researchers to
identify their strengths and weaknesses and make informed choices
for specific problem settings.
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Figure 1: Convert MILP into bipartite graph.

In recent years, machine learning (ML) has emerged as a promis-
ing tool for solving MILP problems, with most frameworks relying
on Graph Neural Networks (GNNs) to exploit the structural proper-
ties of MILP. As shown in Figure 1, Gasse et al. proposed a bipartite
graph representation of MILP problems [35], which achieves a loss-
less transformation of MILP instances into graph structures. Such
graph representations are well-suited for neural embedding net-
works [62], enabling ML-based approaches to learn optimization
strategies directly from problem instances. These methods have
demonstrated potential in bridging the gap between traditional
solvers and modern data-driven techniques, offering new opportu-
nities for improving solver efficiency and adaptability.

However, the lack of well-structured and carefully categorized
datasets poses a significant challenge for both traditional and ML-
based approaches. Homogeneous datasets are particularly impor-
tant for ML-based methods, as heterogeneous problems can lead to
poor model generalization. Previous studies [23, 64] have shown
that GNNss often suffer from over-smoothing and limited expressive-
ness, which hinder their ability to handle diverse problem distribu-
tions. Furthermore, the generalization of large models with strong
out-of-distribution capabilities also benefits from fine-grained cat-
egory labels, which can help capture the structural differences
between problem types during pretraining. These findings high-
light the necessity of datasets with intra-class homogeneity and
inter-class diversity to support both current ML techniques and the
future development of large-scale optimization models.

2.3 Related Benchmark Datasets

The development and evaluation of mixed-integer linear program-
ming (MILP)-solving methods, particularly ML-based approaches,
are significantly hindered by the limitations of existing datasets.
Widely used datasets such as MIPLIB [53] and Coral [26] provide
general MILP instances but lack the structure and diversity needed
for systematic evaluation. These datasets often fail to cover a wide
range of problem scales and structural variations, making them
inadequate for testing solvers designed for large-scale or domain-
specific applications. Moreover, they are not tailored for ML re-
search, as they lack fine-grained categorizations critical for training
and evaluating ML models. Distributional MIPLIB [49] has made
some attempts to address these issues by introducing MILP distri-
butions from 13 domains, classified into different hardness levels.
However, similar to other datasets, it is limited by its small number
of problem categories (13 classes), small-scale problem instances
(variables and constraints at most in the tens of thousands), reliance
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Figure 2: An overview of MILPBench. The Benchmark Datasets component organizes collected MILP instances into 60 well-
categorized classes, guided by the Similarity Evaluation component, which uses structural and embedding-based metrics
to ensure dataset quality. The Baseline Library component enables standardized training, testing, and logging of solving
algorithms, with performance evaluated based on objective function values, gap metrics, and runtime efficiency. Results are
aggregated into a leaderboard to facilitate systematic comparisons across algorithms.

on synthetic problem generation, and lack of real-world problem
curation or an accompanying baseline library.

To address these limitations, we introduce MILPBench, a large-
scale benchmark tailored to the needs of both traditional and ML-
based MILP-solving methods. Unlike existing datasets, MILPBench
offers extensive structural diversity, fine-grained categorizations,
and realistic problem scales, paving the way for more rigorous and
generalizable evaluation.

3 Proposed MILPBench

We propose MILPBench, a large-scale benchmark suite designed to
address the limitations of existing datasets and enable systematic
evaluation of MILP-solving algorithms across diverse conditions.
MILPBench provides a scalable and versatile platform for evaluating
a wide range of solving techniques, including traditional solvers,
heuristic algorithms, and ML-based approaches. By offering a com-
prehensive dataset and baseline library, MILPBench bridges the gap
between academic benchmarks and real-world applications, sup-
porting the advancement of MILP research and fostering innovation
in solver development.

As illustrated in Figure 2, MILPBench comprises three core com-
ponents: Similarity Evaluation, Benchmark Datasets, and Baseline
Library. The Benchmark Datasets include 100,000 MILP instances
organized into 60 well-categorized classes, ensuring both intra-class
homogeneity and inter-class diversity. This is achieved through a
novel classification framework that integrates structural properties
and embedding similarity metrics to analyze and categorize prob-
lem instances. The Similarity Evaluation component ensures that
instances with low similarity scores are reclassified, maintaining the

quality and consistency of the dataset. To enable rigorous and stan-
dardized testing, the Baseline Library provides 15 mainstream solv-
ing methods spanning traditional solvers, heuristic algorithms, and
ML-based approaches. These methods are evaluated using a stan-
dardized "Trainer-Tester-Logger" pipeline, which measures solver
performance based on objective function values, gap estimates, and
runtime efficiency under fixed wall-clock times. Results are aggre-
gated and ranked to create a comprehensive leaderboard, offering
insights into the strengths and weaknesses of different solving
techniques. This robust evaluation framework ensures that MILP-
Bench serves as a scalable and practical testbed for advancing MILP
research.

3.1 Benchmark Datasets

To enable the systematic evaluation of MILP-solving algorithms,
we constructed a comprehensive benchmark dataset that consists
of two main components: MILP Instances and their corresponding
Reference Solutions and Gap Estimates. The dataset is designed
to meet the diverse needs of solving techniques, ranging from
traditional solvers to heuristic algorithms and machine learning
(ML)-based approaches. By combining real-world problems and
standardized mathematical formulations, the dataset ensures broad
coverage across different problem types, scales, and complexities.
The MILP instances in our dataset originate from two primary
sources. The first source includes real-world problems carefully
curated from a wide range of open-source datasets and academic
studies. These include mainstream datasets such as MIPLIB [53],
AClib [50], Regions200 [57], MIRPLib [65], and COR@L [26]. Addi-
tionally, we incorporated problems from domain-specific studies,
such as robustness verification of neural networks [62], lot-sizing
polytopes [13], network design [11], combinatorial auctions [28],
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Figure 3: The overview of graph self-supervised learning. For the bipartite graph representation of MILP, we use the encoder-
decoder structure for reconstruction, and the loss is computed by comparing the output with the features of the nodes in the

original representation.

and 0-1 knapsack problems [14]. Competitions such as the ML4CO
challenge at NeurIPS 2021 [34] and the Reoptimization Competition
2023 [19] were also valuable sources for real-world MILP problems.
These curated instances reflect a wide variety of application do-
mains, but many of them are small in scale and fail to represent
the complexity of large-scale scenarios. Specific details about these
datasets can be found in Appendix A.1.

To address the limitations of small-scale real-world problems,
the second source of our MILP instances consists of problems gen-
erated from standardized mathematical formulations. Specifically,
we constructed instances based on nine canonical MILP problem
classes, including Maximum Independent Set [72], Minimum Vertex
Covering [31], Set Covering [20], Mixed Integer Knapsack Set [12],
and Capacitated Facility Location [8]. For each problem type, we
generated instances at three levels of difficulty—easy, medium, and
hard—corresponding to tens of thousands, hundreds of thousands,
and millions of decision variables, respectively. This approach en-
sures that the dataset includes ultra-large-scale problems, bridging
the gap between academic benchmarks and real-world applications.
Further details of the process are provided in Appendix A.3.

Once the MILP instances were collected, we applied the Simi-
larity Evaluation Metrics described in Section 3.2.1 to assess the
homogeneity of the dataset. Instances with significant internal vari-
ability were re-screened and re-classified using the Classification
Algorithm outlined in Section 3.2.2. This process ensures that the
final dataset achieves a high degree of intra-class homogeneity and
inter-class diversity, facilitating robust and systematic evaluation
of solving techniques.

For each MILP instance, we also provided high-quality reference
solutions and gap estimates to support benchmarking. To obtain
these, we first employed the state-of-the-art solver Gurobi (version
11.0.1) to solve the problems for a fixed duration (e.g., 8 hours),
during which most problems achieved optimal solutions. These so-
lutions, along with the problem instances, were saved in pickle files
for seamless integration into experiments. However, for larger-scale
problems where Gurobi could not compute optimal solutions within
the allocated time, we utilized an Adaptive Constraints Partition
(ACP)-based strategy [78] to iteratively improve the solutions. Start-
ing with the solution X and gap estimate g obtained from Gurobi,
we computed the improved solution x* and its corresponding gap

g* using the following formula:

. X=(1-9x

L @
This approach ensures that high-quality reference solutions are
available even for large-scale problems. Detailed descriptions of
the ACP-based strategy are presented in Appendix B. Finally, the
dataset was partitioned into training and testing subsets to sup-
port algorithm development and evaluation. Specific details of the
partitioning scheme are provided in Appendix A.4.

3.2 Similarity Evaluation

To ensure the quality and utility of MILPBench, we introduce a
novel Similarity Evaluation framework that addresses the limi-
tations of existing datasets. By integrating structural properties
and embedding similarity metrics, this framework ensures that the
100,000 MILP instances in MILPBench are organized into 60 classes
with both intra-class homogeneity and inter-class diversity. The
framework consists of two key components: Similarity Evalua-
tion Metrics, which assess the structural and embedding-based
characteristics of MILP instances to quantify their similarity, and
a Classification Algorithm, which leverages these metrics to
systematically categorize and refine the dataset. This categoriza-
tion process mitigates challenges such as over-smoothing and poor
generalization in GNN-based methods [64], while also enhancing
the applicability of traditional and heuristic solvers through a more
systematic evaluation setup.

3.2.1 Similarity Evaluation Metrics. To quantify the similarity be-
tween MILP instances, we employ a two-pronged approach that
combines structural embedding and neural embedding. These meth-
ods capture complementary aspects of MILP problem structures,
ensuring a comprehensive evaluation of similarity.

Structural Embedding: Each MILP instance is represented as a
10-dimensional feature vector, summarizing key structural proper-
ties derived from its mathematical formulation and bipartite graph
representation. Table 1 lists the metrics used, including features
such as the fraction of non-zero entries in the coefficient matrix
(coef_dens), the mean and standard deviation of variable and con-
straint vertex degrees (var_degree_mean, cons_degree_std), and
the modularity of the graph. These metrics are selected to provide
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Table 1: Structural Metrics for Similarity Evaluation.

Metric Name
coef_dens
cons_degree_mean
cons_degree_std
var_degree_mean
var_degree_std

Description
Fraction of non-zero entries in the coefficient matrix.
Mean degree of constraint vertices in the bipartite graph.
Standard deviation of degrees of constraint vertices.
Mean degree of variable vertices in the bipartite graph.
Standard deviation of degrees of variable vertices.

lhs_mean Mean of non-zero entries in the coefficient matrix (LHS).
lhs_std Standard deviation of non-zero entries in the coefficient matrix (LHS).
rhs_mean Mean of right-hand-side (RHS) values in constraints.
rhs_std Standard deviation of right-hand-side (RHS) values in constraints.
modularity Modularity of the bipartite graph, measuring community structure.

a holistic view of the MILP instance’s structural characteristics. To
evaluate the similarity of MILP instances based on these features,
we compute the Jensen-Shannon (JS) divergence for each metric.
Let JS; denote the JS divergence for the i metric. The similarity
score for the it" metric is defined as:

max(JS) - JS; 3
max(JS) — min(JS)" ®)

The overall structural similarity score is calculated as the average
of all individual metric scores:

score; =

10
1
score = — score;. 4
0 Zl] : @

This scoring system ensures that instances with similar structural
properties are grouped together, facilitating systematic evaluation
and classification.

Neural Embedding: To model intricate relationships such as
local connectivity and coefficient interactions that are not fully cap-
tured by structural embedding, we adopt a graph self-supervised
learning paradigm inspired by Graph Autoencoders [52]. MILP
instances are represented as bipartite graphs and encoded using
a Graph Convolutional Neural Network (GNN) encoder. As illus-
trated in Figure 3, the encoder maps the graph into an intermedi-
ate neural embedding, while the decoder reconstructs the original
graph. The reconstruction loss, computed as the discrepancy be-
tween the reconstructed graph and the original input, ensures that
the embeddings capture meaningful structural patterns. To further
enhance the embeddings, we mask parts of the graph (both node
features and edges) during training, forcing the model to predict
the masked information. Formally, let G = (‘V, X, E) represent a
bipartite graph, where V, X, and E are the nodes, node features,
and edges, respectively. During masking, a subset of nodes Vyp,sk
and edges E .41 are selected with probabilities p, and pe, and their
features are replaced with a special [mask] token. This process
ensures that the learned embeddings encode both global and local
structural features, making them robust for downstream similarity
evaluations.

Similarity Measure: To evaluate the similarity of a set of MILP
instances 7, we calculate the average pairwise Euclidean distance
between their embeddings:

ZL’JJEJJ# Distance(Z;, ;)
1771 -1) ’
where Distance(Z;, ;) denotes the Euclidean distance between

the embeddings of instances 7; and 7. A lower embedding distance
indicates higher similarity among instances, as illustrated in Figure

Embedding Distance = (5)
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Distance in One Class Distance between Two Classes

Figure 4: The Calculation of Similarity Score.

3. By integrating structural and neural embeddings, this hybrid
approach provides a robust and scalable metric for evaluating MILP
instance similarity.

3.2.2 Classification Algorithm. For datasets with low internal sim-
ilarity, we propose a novel strategy to re-screen and re-classify
the data, ensuring greater homogeneity within each subset. This
process begins by applying the neural embedding method described
in Section 3.2.1 to generate embeddings for all problem instances.
These embeddings, which capture both global and local structural
features, are then used as inputs to a spectral clustering algorithm.
Spectral clustering constructs a similarity graph, where nodes rep-
resent problem instances and edge weights encode pairwise similar-
ities. By analyzing the graph’s structure through the eigenvectors
of its Laplacian matrix, spectral clustering effectively identifies
groups of instances with high internal similarity, even in cases
where clusters are non-convex or non-linearly separable.

After the initial clustering, we evaluate the similarity metrics
within each subset to assess their internal homogeneity. Subsets
with sufficiently high similarity scores are retained, while those
with lower scores are further subdivided using the same spectral
clustering approach. This iterative refinement process, as illus-
trated in the right panel of Figure 4, ensures that the final dataset
is well-structured, with clearly defined categories that exhibit both
intra-class homogeneity and inter-class diversity. By leveraging
this classification algorithm, we provide a robust foundation for sys-
tematic evaluation and training of solving algorithms, facilitating
both research advancements and practical applications.

3.3 Baseline Library

To validate the effectiveness of MILPBench, we developed a com-
prehensive Baseline Library consisting of 15 mainstream solving
methods. These methods span traditional solvers, heuristic algo-
rithms, and ML-based approaches, providing a broad spectrum of
techniques for rigorous benchmarking and comparison. This library
ensures that MILPBench can evaluate solving techniques across
diverse methodologies and application scenarios.

The first category in the Baseline Library includes state-of-the-
art traditional solvers, such as SCIP (version 4.3.0) [2], Gurobi (ver-
sion 11.0.1) [43] and CPLEX(version 22.1.1.0) [24]. These solvers
represent the leading academic and commercial optimization tools
and are widely used in both research and industrial applications.
We implemented these solvers using their official APIs to solve
specific MILP problems. The second category consists of heuris-
tic algorithms, including Large Neighborhood Search (LNS) [47],
General Large Neighborhood Search (GLNS) [70], Least Integeal
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Table 2: The distance of graph structure and neural embed-
ding in each heterogeneous classes. The blue background
colour indicates classical MILP datasets.

Structure Distance =~ Embedding Distance
MIS_easy 0.011 1.50e-08
MVC_easy 0.010 1.24e-08
SC_easy 0.009 3.69e-08
Aclib 25.402 2.52e-06
Cut 7.122 1.47e-05
fe.data 5.867 9.68e-07
Hem_knapsack 0.566 8.75e-07
Hem_mis 0.356 4.29¢-07
Hem_setcover 0.286 5.33e-07
Hem_corlat 5.956 3.34e-07
Hem_mik 226.520 9.54e-06
item_placement 0.037 7.03e-12
load_balance 0.436 6.97e-07
anonymous 222.061 8.99e-06
nn_verification 18.460 3.71e-06
vary_bounds_s1 0.001 7.08e-08
vary_bounds_s2 0.009 3.26e-08
vary_bounds_s3 0.009 1.90e-08
vary_matrix_s1 0.011 0.0
vary_matrix_rhs_bounds_s1 0.008 1.74e-08
vary_obj_sl1 3.18e-06 8.39e-07
vary_obj_s2 1.22e-05 2.64e-07
vary_rhs_s1 0.007 9.83e-08
vary_rhs_s2 0.550 1.11e-05
vary_rhs_s4 0.601 1.47e-05
Transportation 148.368 1.10e-05
Coral 1056768.799 6.03e-03
ECOGCNN 468055.052 5.41e-02
MIPlib 7002615758.102 8.82e-02
Nexp 5511575859.716 2.48e-01

Heuristic (LIH) [61], Most Integeal Heuristic (MIH) [18], Relax-
ation Induced Neighborhood Search (RINS) [27] and Adaptive Con-
straint Partitioning (ACP) Optimization Framework [78]. These
algorithms were reproduced based on their published pseudocode
and adapted to work seamlessly with the MILP instances in our
dataset. This category offers robust heuristic approaches that bal-
ance solution quality and computational efficiency. The third cate-
gory comprises ML-based solving algorithms, which leverage ad-
vanced learning techniques to improve MILP-solving performance.
These include Learn2Branch [35], Hybrid-Learn2Branch [41], GNN
&GBDT-guided Optimization Framework [80], Neural Diving [62],
Predict&Search Optimization Framework[44], and GNN-MILP [22].
These methods were retrained and tested using benchmark datasets,
ensuring compatibility and fair evaluation.

Additionally, we experimented with other solving algorithms,
such as Feasible Pump [32] and Simulated Annealing [1]. However,
due to their inability to produce feasible solutions within reason-
able computational limits for most problems, these methods were
ultimately excluded from the final Baseline Library. Overall, the
Baseline Library, combined with the Benchmark Datasets, provides
a robust and standardized platform for evaluating and comparing
the performance of diverse MILP-solving techniques.

4 Experiments

To validate the effectiveness of MILPBench, we conducted a series
of experiments designed to highlight its advantages over traditional
MILP datasets, such as MIPLib, Coral, and Nexp. These experiments
systematically demonstrate MILPBench’s ability to provide more
homogeneous problem subsets, its robust classification algorithm,
and its utility for benchmarking optimization algorithms. Specifi-
cally, we first compare the internal similarity of problem instances

Ye et al.
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Figure 5: Structure and embedding distance within classes.

in MILPBench against traditional datasets (Section 4.1), showcasing
its superior ability to group structurally and semantically similar
instances. Next, we analyze the distance matrix between problem
categories (Section 4.2), validating the effectiveness of the classi-
fication method. Finally, we evaluate the performance of various
benchmark algorithms on categorized problem subsets (Section
4.3), exposing potential weaknesses in state-of-the-art methods and
demonstrating MILPBench’s value in advancing the field.

4.1 Dataset Analysis

To validate the benefits of MILPBench over traditional MILP datasets
such as MIPLib, Coral, and Nexp in evaluating ML-based optimiza-
tion algorithms, we conducted a comparative analysis focusing on
problem similarity. The experimental configurations are provided
in Appendix C.2 for reproducibility.

The results, detailed in Table 2, reveal a striking contrast in prob-
lem similarity. For graph structural embedding, traditional datasets
like MIPLib exhibited remarkably high variability, with pairwise
distances between problem instances often exceeding hundreds
of millions of times those observed in MILPBench. Similarly, the
neural embedding distances in traditional datasets were found to
be tens of thousands of times greater than those in MILPBench.
These results demonstrate that MILPBench achieves significantly
lower variability between instances, both in terms of structural
and neural embeddings. This reduced variability directly translates
to enhanced homogeneity within MILPBench. By providing prob-
lem instances that are more structurally and semantically similar,
MILPBench enables more systematic evaluation of ML-based opti-
mization algorithms. This is in stark contrast to traditional datasets,
where the wide variability among instances often leads to incon-
sistent and less interpretable evaluation outcomes. MILPBench
addresses this challenge by offering a well-curated dataset designed
to promote consistency and comparability, ultimately advancing
the development and benchmarking of optimization algorithms.

4.2 Dataset Reclassification

In some datasets within the collection, particularly those derived
from open-source sources, problem instances generated from di-
verse scenarios are often intermingled. This results in highly com-
plex distributions, making these datasets unsuitable for direct use
as training data for ML-based optimization algorithms. To address
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Table 3: Gap estimation of baselines. + represents the problem of scale being too large to accept the time to collect training
samples. ! represents the problem of errors during band training. - represents MILP problems that GNN&GBDT cannot solve.

Gurobi SCIP CPLEX GLNS ACP RINS Learn2branch GNN&GBDT Predict&Search | Time

MIS_hard 0.1714 53.4844 1.1265 0.1714 0.1184 0.2998 + 0.1169 + 4000s
MVC_hard 0.1310 91.8785 0.7098 0.1018 0.1077 0.1961 + 0.0951 + 4000s
SC_hard 0.9920 425323.8 + 0.9852 0.9850 0.9902 + 0.9887 + 4000s
MIPlib 0.0000 0.0587 0.0000 0.2157 0.0004 0.2331 0.3363 - 0.0000 150s
Coral 2.85e+04  2.857e+19  4.96e+05 3.05e+04  3.05e+04  3.52e+04 + - 2.33e+04 4000s

Cut 0.1490 0.5387 0.1046 0.2744 0.1651 0.3781 0.5782 - 0.1568 4000s
ECOGCNN 0.2512 4.6056 0.2899 0.2730 0.2516 0.2814 + - 0.2512 4000s
HEM_knapsack 0.0000 0.0000 0.0000 0.0000 0.0000 0.0117 0.0000 0.0000 0.0000 100s
HEM_corlat 0.0000 0.0000 0.0000 0.0129 0.0000 0.0141 ! - 0.0000 100s
HEM_mik 0.0000 0.0000 0.0000 0.0034 0.0146 0.0467 ! - 3.00e-15 100s
item_placement 0.6481 2.332e+07 0.9204 0.8431 0.8076 0.9971 4.17e+07 - 0.6595 4000s
load_balancing 0.0028 0.0273 0.0003 0.0227 0.0035 0.0616 + - 0.0028 1000s
anonymous 0.3088 4.2244 0.3386 0.9256 0.5449 0.8876 + - 0.2909 4000s
Nexp 0.0787 0.1514 0.0813 0.1095 0.0754 0.0989 0.1629 - 0.0759 4000s
Transportation 0.1512 0.2575 0.1646 0.2490 0.1767 0.1962 0.2725 - 0.1568 4000s
vary_bounds_s1 0.0000 0.0485 0.0001 0.3956 0.0000 0.4536 0.1518 - 0.0003 400s
vary_matrix_s1 0.0000 0.3796 0.0001 0.0008 0.0008 0.2443 0.4002 - 0.0000 100s
vary_obj_s1 0.0000 0.0031 0.0000 0.0019 0.0000 0.0012 0.0054 0.0000 0.0000 100s
vary_rhs_s1 0.0003 0.0364 0.0000 5.5134 0.2037 1.7870 + - 0.0000 100s
Aclib 0.0000 0.0000 0.0001 0.0006 0.0028 0.0044 ! - 0.0000 100s
fc.data 0.0000 0.0000 0.0000 0.1729 0.0000 0.8141 ! - 0.0000 100s
nn_verification 0.0001 0.0756 0.0001 0.1493 0.1493 0.3734 ! - 0.0000 100s

this, we applied the spectral clustering algorithm to reclassify the
complete datasets, including MIPLib, Coral, ECOGCNN, and Nexp.

Using MIPLib as an example, we employed spectral clustering to
partition the dataset into six distinct classes. To evaluate the simi-
larity between these classes, we calculated the average Euclidean
distance between instance embeddings from different classes. As
shown in the right panel of Figure 4, these distances provide a
quantitative measure of class similarity. Furthermore, the intra-
class distances, measured using both graph structural and neural
encoding metrics, are visualized in Figure 5. The results reveal
that the first five classes exhibit relatively small intra-class and
inter-class distances, indicating a high degree of similarity among
instances. In contrast, the sixth class stands out with significantly
larger distances, suggesting the presence of outlier instances.

Based on these findings, we excluded the sixth class from the MI-
PLib dataset to ensure a more homogeneous classification, thereby
improving its suitability for subsequent baseline tests. Detailed clas-
sification results for other datasets, including Coral, ECOGCNN,
and Nexp, are provided in Appendix C.3.

4.3 Benchmarking Study

To validate the effectiveness of MILPBench and analyze the perfor-
mance of representative algorithms across different categories, we
conducted comparative experiments focusing on objective function
values and gap estimation under a consistent wall-clock time limit.
This section highlights the performance of three major algorithm
categories: classical solvers (Gurobi, SCIP, and CPLEX), heuristic
approaches (GLNS, ACP, and RINS), and machine learning (ML)-
based methods (Learn2Branch, GNN&GBDT, and Predict&Search).
Detailed comparisons within each category are provided in Ap-
pendix C.5. Here, we focus on cross-category comparisons and the
unique value of MILPBench in evaluating algorithm performance
beyond standard benchmarks.

As shown in Table 3, classical solvers exhibit the most robust and
reliable performance across diverse problem types. Among them,

Gurobi consistently achieves the lowest gap values in real-world
problems such as load_balancing and Transportation, as well
as in smaller-scale precision-oriented problems like MIP1ib and
HEM_knapsack. CPLEX also demonstrates competitive performance
on many instances, particularly in structured problems such as
Cut. However, the results highlight the limitations of SCIP under
time constraints, with significantly higher gap values in complex
problems like SC_hard and MVC_hard. These findings reaffirm the
dominance of classical solvers, especially in scenarios requiring
optimality and feasibility guarantees.

Heuristic approaches, such as GLNS, ACP, and RINS, demon-
strate effectiveness in large-scale problems like MIS_hard and SC_h
ard, where computational efficiency is critical. GLNS performs com-
parably to Gurobi on MIS_hard, while RINS achieves reasonable
gap values on MVC_hard and Cut, albeit at the expense of slightly
higher computational time. However, heuristic methods struggle
in more constrained scenarios, such as HEM_corlat and HEM_mik,
where their inability to handle tight constraints becomes evident.

ML-based methods, including Learn2Branch, GNN&GBDT, and
Predict&Search, demonstrate promising results in specific instances
but face challenges in broader contexts. Notably, GNN&GBDT
achieves strong performance across all IP problems, outperforming
all other baselines in these instances. However, as an IP-specific
framework, it struggles to generalize to MILP problems, leaving
some instances unsolved. Similarly, Predict&Search shows competi-
tive performance on problems like Cut and vary_rhs_s1, occasion-
ally matching or outperforming heuristic methods. Nevertheless, it
also fails to solve certain constrained problems, limiting its overall
robustness. Meanwhile, Learn2Branch struggles with large-scale
problems like Coral and Cut, where the exponential growth of the
search space significantly impacts its effectiveness.

To visually compare the performance of representative algo-
rithms across diverse problem types, we employed a scoring mech-
anism based on their gap estimates. Scores were normalized to a
0-100 scale using the Gaussian transformation Score(x) = 100 -
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Figure 6: Scores for IP (blue) and MILP (red) problems in MILPBench for different baselines.

[N}

X'

e~ 'z, where x is the gap estimate. This approach ensures that al-
gorithms with smaller gap values receive higher scores, providing
an objective and standardized metric for cross-category evaluation.

Figure 6 illustrates the normalized scores for integer program-
ming (IP) and mixed-integer linear programming (MILP) prob-
lems across all baselines. Classical solvers, particularly Gurobi and
CPLEX, consistently achieve higher scores, reflecting their robust
performance across both IP and MILP problems. Gurobi excels in
precision-oriented and large-scale problems, while CPLEX demon-
strates strength in structured instances like Cut. In contrast, SCIP
achieves relatively lower scores due to its struggles in handling com-
plex and time-constrained problems. Heuristic approaches, such
as ACP and RINS, achieve competitive scores on large-scale prob-
lems, with ACP consistently outperforming other heuristics. How-
ever, their scores decline in constrained scenarios, highlighting
the trade-off between computational efficiency and solution ro-
bustness. ML-based methods, while showing potential in specific
benchmarks, exhibit greater variability. For instance, GNN&GBDT
achieves high scores in IP problems but struggles to generalize
to MILP instances. Similarly, Predict&Search demonstrates strong
performance in structured problems but lacks consistency across
other scenarios.

In summary, classical solvers remain the most reliable and ver-
satile algorithms, while heuristics offer computational advantages
in large-scale problems. ML-based methods, despite their potential,
require further refinement to improve generalizability and scala-
bility. These findings reinforce the importance of MILPBench as a

comprehensive benchmarking framework that facilitates detailed
performance evaluations and inspires the development of hybrid
strategies integrating the strengths of all three categories.

5 Conclusion and Future Work

This paper presented MILPBench, a comprehensive and open-source
benchmark dataset for evaluating optimization algorithms in mixed-
integer linear programming (MILP). By systematically categorizing
problem instances, MILPBench enables structured analyses of algo-
rithm performance, revealing the strengths and limitations of both
classical solvers and emerging approaches.

Future work will focus on expanding the dataset to include more
diverse MILP problems and enhancing compatibility with evolving
optimization methodologies. MILPBench aims to foster rigorous
evaluations and drive the development of robust and efficient algo-
rithms, benefiting both research and practical applications.
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MILPBench: A Large-scale Benchmark Test Suite for
Mixed Integer Linear Programming Problems

APPENDIX

This Appendix is divided into four sections. Appendix A provides
details of the benchmark dataset. Appendix B outlines the specifics
of the algorithms. Appendix C presents additional experimental
results to further demonstrate the effectiveness and efficiency of
MILPBench.

A Details of Benchmark Dataset

A.1 Open-source Datasets

We have carefully curated a substantial collection of mixed-integer
linear programming (MILP) instances from a wide range of sources
to assemble the MILPBench dataset. These sources include well-
established open-source datasets such as MIPLib [53], AClib [50],
Regions200 [57], COR@L [26], and MIRPLIB [65]. Additionally, we
incorporated problem instances from domain-specific academic
studies, including research on robustness verification for neural
networks [62], cut selection [74], lot-sizing polytope [13], network
diffusion maximization [6], network design [11], fixed-charge flow
polytope [10], valid inequalities [9], conic cuts [15, 25], and 0-1 knap-
sack problems [14]. Furthermore, the dataset includes challenging
instances from competitions such as the ML4CO competition at
NeurIPS 2021 [34] and the Reoptimization Challenge 2023 [19].

Details regarding the number of instances per problem, includ-
ing the sizes of training and testing datasets, the average number
of decision variables, and the average number of constraints, are
provided in Table 4. Due to the double-blind review policy, source
URLs for the datasets have been omitted but will be made available
after the review process.

Our analysis shows that MILPBench is a robust and diverse
dataset, encompassing a wide range of problem characteristics, in-
cluding varying numbers of decision variables, constraints, and
coefficient matrix densities. This diversity ensures that MILPBench
is not only suitable for evaluating classical solvers but also provides
a valuable resource for understanding and analyzing the strengths
and limitations of modern optimization algorithms. By including
instances from real-world applications, MILPBench facilitates a
comprehensive assessment of algorithm performance across dif-
ferent problem domains and scales, ultimately contributing to the
advancement of MILP research and practical applications.

A.2 Used Assets

MILPBench is an open-source tool, and it can be accessed at: .
Table 5 provides a detailed list of the resources and assets utilized
in MILPBench, along with their respective licenses. We strictly
adhere to these licenses during the development and distribution
of MILPBench.

For assets marked as "Need to cite," this indicates that there is no
explicit license provided, but the repository explicitly requires that
the corresponding publication be cited when using the dataset. For
example, datasets prefixed with "vary" in the MILPBench collection
originate from the MIP Workshop 2023 Computational Competition
(MIPcc23) [19]. Proper citation of the corresponding literature is
essential when employing these datasets in any analysis or pub-
lication. Similarly, datasets such as Coral [58], MIPlib [38], and
Transportation [39] also require appropriate citations. This ensures
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Table 4: Detailed parameter information for each open-
source dataset.

Name (Path) Num. (Train) Num. (Test) Avg.Vars Avg. Cons
nn_verification 3613 9 7144.02 6533.58
item_placement 9990 10 1083 195
load_balancing 9990 10 61000 64307.19

anonymous 134 4 34674.03 44498.19
HEM_knapsack 9995 5 720 72
HEM_mis 9979 5 500 1953.48
HEM_setcover 9995 5 1000 500
HEM_corlat 1979 5 466 486.17
HEM_mik 85 5 386.67 311.67
vary_bounds_s1 45 5 3117 1293
vary_bounds_s2 45 5 1758 351
vary_bounds_s3 45 5 1758 351
vary_matrix_s1 45 5 802 531
vary_matrix_rhs_bounds_s1 45 5 27710 16288
vary_matrix_rhs_bounds_obj 45 5 7973 3558
vary_obj_sl 45 5 360 55
vary_obj_s2 45 5 745 26159
vary_obj_s3 45 5 9599 27940
vary_rhs_s1 45 5 12760 1501
vary_rhs_s2 45 5 1000 1250
vary_rhs_s3 45 5 63009 507
vary_rhs_s4 45 5 1000 1250
vary_rhs_obj_sl 45 5 90983 33438
vary_rhs_obj_s2 45 5 4626 8274
Aclib 89 10 181 180
Coral 272 7 18420.92 11831.01
Cut 11 3 4113 1608.57
ECOGCNN 41 3 36808.25 58768.84
fc.data 15 5 571 330.5
MIPlib 46 4 7719.98 6866.04
Nexp 72 5 9207.09 7977.14
Transportation 27 5 4871.5 2521.467
MIPLIB_collection_easy 639 10 119747.4 123628.3
MIPLIB_collection_hard 102 5 96181.4 101135.8
MIPLIB_collection_open 199 5 438355.9 258599.5
MIRPLIB_Original 67 5 36312.2 11485.8
MIRPLIB_Maritime_Group1 35 5 13919.5 19329.25
MIRPLIB_Maritime_Group2 35 5 24639.8 34053.25
MIRPLIB_Maritime_Group3 35 5 24639.8 34057.75
MIRPLIB_Maritime_Group4 15 5 4343.0 6336.0
MIRPLIB_Maritime_Group5 15 5 48330.0 66812.0
MIRPLIB_Maritime_Group6 15 5 48330.0 66815.0

that all contributors are acknowledged for their work and that the
academic integrity of the research community is maintained.

For assets labeled as "Readme," the absence of an explicit license
is clarified by a Readme file that specifies the terms of use. For
example, the datasets Aclib, Cut, fc.data, and Nexp include detailed
Readme files hosted at the following location: Link. These Readme
files provide important usage guidelines and permissions, indicating
that the datasets can be used without restriction, provided proper
acknowledgments are made.

Additionally, the ECOGCNN dataset’s usage guidelines are out-
lined in a Readme file hosted at Link. This link provides compre-
hensive information about public domain software and datasets,
emphasizing adherence to license conditions and proper attribu-
tion. By following these practices, MILPBench upholds academic
integrity and supports the continued openness and collaboration
in the optimization research community.

A.3 Standard Problem Instances

We generated a substantial number of standard problem instances
based on seven canonical MILP problems: Maximum Indepen-
dent Set (MIS) [72], Minimum Vertex Covering (MVC) [31], Set
Covering (SC) [20], Mixed Integer Knapsack Set (MIKS) [12],
Balanced Item Placement (BIP) [66], Combinatorial Auctions
(CA) [28], and Capacitated Facility Location (CFL) [8].


https://atamturk.ieor.berkeley.edu/data/readme.txt
https://plato.asu.edu/guide.html
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Table 5: License of each open source dataset. "Need to cite"
means there is no explicit license, but the repository states
that the corresponding article needs to be cited to use the
dataset and it can be used without restriction. "Readme"
means there is no explicit license, but the repository’s
Readme file explains that it can be used without restriction.

Name(Path) License Source
nn_verification CC BY 4.0 Link
item_placement BSD 3-Clause License Link
load_balancing BSD 3-Clause License Link

anonymous BSD 3-Clause License Link
HEM_knapsack MIT Link
HEM_mis MIT Link
HEM_setcover MIT Link
HEM_corlat MIT Link
HEM_mik MIT Link
vary_bounds_s1 Need to cite Link
vary_bounds_s2 Need to cite Link
vary_bounds_s3 Need to cite Link
vary_matrix_s1 Need to cite Link
vary_matrix_rhs_bounds_s1 Need to cite Link
vary_matrix_rhs_bounds_obj Need to cite Link
vary_obj_s1 Need to cite Link
vary_obj_s2 Need to cite Link
vary_obj_s3 Need to cite Link
vary_rhs_s1 Need to cite Link
vary_rhs_s2 Need to cite Link
vary_rhs_s3 Need to cite Link
vary_rhs_s4 Need to cite Link
vary_rhs_obj_s1 Need to cite Link
vary_rhs_obj_s2 Need to cite Link
Aclib Readme Link

Coral Need to cite Link

Cut Readme Link
ECOGCNN Readme Link
fc.data Readme Link
MIPlib_collection_easy Need to cite Link
MIPlib_collection_hard Need to cite Link
MIPlib_collection_open Need to cite Link

MIRPLIB_Original
MIRPLIB_Maritime_Group1
MIRPLIB_Maritime_Group2
MIRPLIB_Maritime_Group3
MIRPLIB_Maritime_Group4

BSD 3-Clause License Link
BSD 3-Clause License Link
BSD 3-Clause License Link
BSD 3-Clause License Link
BSD 3-Clause License Link
MIRPLIB_Maritime_Group5 BSD 3-Clause License Link
MIRPLIB_Maritime_Group6 BSD 3-Clause License Link
Nexp Readme Link
Transportation Need to cite Link

For each type of problem, we generated instances at three lev-
els of difficulty—easy, medium, and hard—corresponding to prob-
lem scenarios with tens of thousands, hundreds of thousands, and
millions of decision variables, respectively. Below, we detail each
problem type and provide their mathematical formulations.

Maximum Independent Set Problem: Given an undirected
graph G = (V, &), a subset of nodes S C V is an independent set
if no two nodes in S are connected by an edge e € &. The goal
of the MIS problem is to find the independent set of maximum
cardinality. Representing the decision variables as a binary vector x,
where x, = 1 indicates that node v is included in the independent
set and x, = 0 otherwise, the problem can be formulated as:

max E Xy

veV
st. xy+x,<1, V(uo0)€s, ©)
xp €{0,1}, VYoe V.

Minimum Vertex Covering Problem: For an undirected graph
G = (V,8), a subset of nodes S C V is a vertex cover if every
edge e € & has at least one endpoint in S. The MVC problem seeks
the vertex cover of minimum cardinality. Using a binary variable x,
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where x, = 1 indicates that node v is included in the vertex cover,
the problem is formulated as:

min Z Xo

veV
st. xy+x,>21, VY(uo0) €8, )
xp €{0,1}, VYoe V.

Set Covering Problem: Given a finite universal set U = {1,2,...,n}

and a collection of subsets S1, S, ..., Sm € U, each associated with
a cost ¢;, the SC problem seeks to select the combination of subsets
that covers all elements of U at minimum cost. Using binary de-
cision variables x; where x; = 1 indicates subset S; is selected, the
problem is formulated as:

m
min Zcixi
i=1
st Y x=1 Vjied, ®)
i:jeS;

xj € {0,1}, Vi=1,...,m.

Mixed Integer Knapsack Set Problem: The MIKS problem
is a variant of resource allocation problems involving both binary
and continuous decisions. Given N sets and M items, the goal is
to minimize the total cost of selecting sets while ensuring that
each item is covered by at least one set. Let x; denote the decision
variable for set i, where x; = 1if set i is fully selected and 0 < x; < 1
if set i is partially selected. The problem is formulated as:

N

min Zcixi
i=1

sit. inZL Vi=1,...,M, ©)
i:jeS;

0<x;j<1 Vi=1,...,N.

Balanced Item Placement Problem: The BIP problem involves
distributing N items across B buckets to minimize the imbalance
across resource dimensions. Let x; ; be a binary variable where
xj = 1if item i is placed in bucket j. The problem is formulated
as:

R
min max_deficit,
r=1
B
s.t. in’j=l, Vi=1,...,N,
= (10)

N
Z wijrxij < Cjr, Vi1,

Il
—

Xij € {0,1}, Vi, j.

Combinatorial Auction Problem: In CA problems, bidders
place bids on combinations of items. The goal is to select bids that
maximize revenue while ensuring no item is allocated to more than
one bidder. Using binary decision variables x; where x; = 1 if bid i
is selected, the problem is formulated as:


s://storage.cloud.google.com/neural-mip-solving/nn_verification.tar.gz
https://drive.google.com/file/d/1MytdY3IwX_aFRWdoc0mMfDN9Xg1EKUuq/view?usp=sharing
https://drive.google.com/file/d/1MytdY3IwX_aFRWdoc0mMfDN9Xg1EKUuq/view?usp=sharing
https://drive.google.com/file/d/1MytdY3IwX_aFRWdoc0mMfDN9Xg1EKUuq/view?usp=sharing
https://drive.google.com/drive/folders/1LXLZ8vq3L7v00XH-Tx3U6hiTJ79sCzxY?usp=sharing
https://drive.google.com/drive/folders/1LXLZ8vq3L7v00XH-Tx3U6hiTJ79sCzxY?usp=sharing
https://drive.google.com/drive/folders/1LXLZ8vq3L7v00XH-Tx3U6hiTJ79sCzxY?usp=sharing
https://drive.google.com/drive/folders/1LXLZ8vq3L7v00XH-Tx3U6hiTJ79sCzxY?usp=sharing
https://drive.google.com/drive/folders/1LXLZ8vq3L7v00XH-Tx3U6hiTJ79sCzxY?usp=sharing
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_bounds/series_1
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_bounds/series_2
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_bounds/series_3
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_matrix/series_1
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_matrix_rhs_bounds/series_1
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_matrix_rhs_bounds_obj/series_1
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_obj/series_1
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_obj/series_2
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_obj/series_3
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_rhs/series_1
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_rhs/series_2
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_rhs/series_3
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_rhs/series_4
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_rhs_obj/series_1
https://github.com/ambros-gleixner/MIPcc23/tree/main/datasets/vary_rhs_obj/series_2
http://ieor.berkeley.edu/~atamturk/data/capacitated.lotsizing/cls.data.tar.gz
https://coral.ise.lehigh.edu/data-sets/mixed-integer-instances/
https://atamturk.ieor.berkeley.edu/data/cut.set/
https://plato.asu.edu/ftp/path/
https://atamturk.ieor.berkeley.edu/data/fixed.charge.network.flow/
https://plato.asu.edu/ftp/milp/
https://plato.asu.edu/ftp/milp/
https://plato.asu.edu/ftp/milp/
https://github.com/ds4dm/ml4co-competition/blob/main/LICENSE
https://github.com/ds4dm/ml4co-competition/blob/main/LICENSE
https://github.com/ds4dm/ml4co-competition/blob/main/LICENSE
https://github.com/ds4dm/ml4co-competition/blob/main/LICENSE
https://github.com/ds4dm/ml4co-competition/blob/main/LICENSE
https://github.com/ds4dm/ml4co-competition/blob/main/LICENSE
https://github.com/ds4dm/ml4co-competition/blob/main/LICENSE
https://atamturk.ieor.berkeley.edu/data/additive.variable.upper.bounds/
https://plato.asu.edu/ftp/lptestset/fctp/
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Table 6: Summary of Generated Instances for Seven Problem
Types

Name (Path) Number of Instances ~ Avg. Vars  Avg. Cons
MIS_easy 50 20000 60000
MIS_medium 50 100000 300000
MIS_hard 50 1000000 3000000
MVC_easy 50 20000 60000
MVC_medium 50 100000 300000
MVC_hard 50 1000000 3000000
SC_easy 50 40000 40000
SC_medium 50 200000 200000
SC_hard 50 2000000 2000000
BIP_easy 50 4081 290
BIP_medium 50 14182 690
BIP_hard 50 54584 2090
CAT _easy 50 2000 2000
CAT_medium 50 22000 22000
CAT _hard 50 2000000 2000000
CFL_easy 50 16040 80
CFL_medium 50 144200 320
CFL_hard 50 656520 800
MIKS_easy 50 5000 5000
MIKS_medium 50 55000 55000
MIKS_hard 50 1000000 1000000
N
max Z CiX;j
i=1
st. Z xi<1l, Vj=1,...,M, (1)
i:jeS;
xi €{0,1}, Vi=1,...,N.

Capacitated Facility Location Problem: The CFL problem
involves determining optimal facility locations and customer as-
signments while minimizing total costs. Let x; ; be a binary variable
indicating whether customer i is assigned to facility j, and y; indi-
cate whether facility j is opened. The problem is formulated as:

N M M
min Z Z CijXi,j + Z fiyj
=1

i=1 j=1

M
s.t. xii=1 Vi=1,...,N,
JZ:; " (12)

N

Zdix,-,jscjyj, Vji=1,...,M,
i=1

xij,yj € {0,1}, Vi, j.

A4 Training and Testing Dataset Partition

For training and testing, we have randomly partitioned the problem
data into training and testing datasets, the result of testing dataset
is shown in https://anonymous.4open.science/r/MILPBench.

B Details of ACP

The Adaptive Constraint Partition Based Optimization Frame-
work (ACP) is an iterative approach designed to improve the solu-
tion quality of integer programming (IP) problems. It starts with
an initial feasible solution X, which can be obtained from a sub-
routine solver such as Gurobi or SCIP. At each iteration, the set
of constraints C is randomly partitioned into k disjoint blocks,
C=CiUCyU---UCy, where C;NCj =0 for i # j. A single block
C; is then selected, and the associated decision variables Xj,,;, are
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optimized using a subroutine solver, while the remaining variables
X\ Xsup are fixed at their current values. This localized optimiza-
tion reduces computational complexity by focusing on a smaller
subproblem rather than solving the entire problem.

To avoid stagnation in local optima, ACP adaptively adjusts the
number of blocks k based on the improvement of the objective
value f(x). If the improvement rate between consecutive iterations
is smaller than a predefined threshold €, k is reduced to expand the
neighborhood, allowing the algorithm to explore a broader search
space. The process continues until a stopping criterion, such as a
time limit or convergence, is met. The final solution X* is returned
as the improved result. The pseudocode for ACP is provided in
Algorithm 1.

Algorithm 1 The Framework of ACP

1: Input: An IP P with constraints C, an initial feasible solution
X, a subroutine solver F
: Output: An improved solution x*
: while Stopping criteria not met do
Randomly partition C into C1,Cy, ..., Ck
Select variables Xj,,;, associated with a random block C;
Fix X \ X, at their current values
Optimize Xg,,;, using solver F to obtain updated solution x
if f(x) — f(Last_x) < € - f(Last_x) then
k < k — 1 {Adaptive Adjustment}
10:  endif
11: end while
12: Return: x

R A U

C Details of Experiments

C.1 Experimental Environments

All experiments were conducted on a machine equipped with an
Intel Xeon Platinum 8375C @ 2.90GHz CPU and four NVIDIA
TESLA V100 (32G) GPUs. Each scale of Benchmark MILP problems
was tested across multiple instances, and the results presented are
the average values from five runs.

C.2 Dataset Analysis

The dataset analysis involved measuring both graph structural
embedding distances and neural embedding distances, comparing
these metrics with those derived from established MILP datasets.
To ensure computational feasibility, comparisons were restricted
to representative problems containing fewer than 50,000 decision
variables.

C.3 Dataset Reclassification

For certain datasets, particularly those sourced from open collec-
tions, problem instances generated from diverse scenarios are often
combined, resulting in a highly complex distribution. To address
this, we utilized the spectral clustering algorithm to reclassify the
dataset into distinct clusters. The reclassified datasets and their re-
spective clusters are presented in https://anonymous.4open.science/
r/MILPBench.


https://anonymous.4open.science/r/MILPBench
https://anonymous.4open.science/r/MILPBench
https://anonymous.4open.science/r/MILPBench
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Table 7: Objective function value of solver baselines. The bold numbers indicate the best results achieved by the solvers.

Problem Gurobi SCIP CPLEX Time
MIS_easy 4598.067 3723.410 4554.145 600s
MIS_medium 21754.976 18627.825 21246.690 2000s
MIS_hard 216540.975 9078.864 209950.985 4000s
MVC_easy 5383.041 6290.954 5407.354 600s
MVC_medium 28198.226 31262.780 28308.290 4000s
MVC_hard 283348.706 490890.570 327134.826 4000s
SC_easy 3301.348 5047.490 3209.813 600s
SC_medium 18026.891 25228.193 16507.670 2000s
SC_hard 320046.569 919489.182 - 4000s
MIPlib 18436.048 18436.534 18436.048 150s
Coral 3805.704 8.484e+07 5741.045 4000s

Cut 28944.667 36987.667 25092.500 4000s
ECOGCNN 755952.240 755954.907 755954.573 4000s
HEM_knapsack 422.600 422.600 422.600 100s
HEM_mis 228.800 228.800 228.800 100s
HEM_setcover 231.600 231.600 231.600 100s
HEM_corlat 251.000 251.000 251.000 100s
HEM_mik -62758.400 -62758.400 -62758.400 100s
item_placement 5.331 10.803 6.530 4000s
load_balancing 708.800 712.000 708.800 1000s
anonymous 249645.728 1.068e+06 274700.122 4000s
Nexp 1.163e+08 1.167e+08 1.163e+08 4000s
Transportation 1.240e+06 1.300e+06 1.255e+06 4000s
vary_bounds_s1 12381.800 12542.200 12381.800 400s
vary_bounds_s2 351.000 351.000 351.000 1000s
vary_bounds_s3 351.000 351.000 351.000 1000s
vary_matrix_s1 61.594 62.618 61.594 100s
vary_matrix_rhs_bounds_s1 2.002e+09 2.002e+09 2.002e+09 100s
vary_matrix_rhs_bounds_obj_s1 -51638.297 -45611.603 -51637.689 100s
vary_obj_s1 8625.400 8630.000 8625.400 100s
vary_obj_s2 1169.489 1171.025 1169.489 150s
vary_obj_s3 -2180.098 30.251 -349.464 100s
vary_rhs_s1 -349.464 -338.944 -349.464 100s
vary_rhs_s2 -17168.351 -17167.794 -17167.985 100s
vary_rhs_s3 57259.200 57257.400 57258.400 100s
vary_rhs_s4 -17166.446 -17166.460 -17166.275 100s
vary_rhs_obj_s1 -179337.380 -177955.024 -179338.088 600s
vary_rhs_obj_s2 -807958.650 -807929.003 -807960.279 100s
Aclib 82427.000 82427.000 82427.000 100s
fe.data 378.600 378.600 378.600 100s
nn_verification -8.251 -8.390 -8.251 100s

C.4 Settings of Benchmarking Study

In our benchmarking study, hyperparameter selection played a crit-
ical role in optimizing the performance of the baseline algorithms.
Different strategies were employed for hyperparameter tuning de-
pending on the method. While some algorithms performed well
with default settings, others required careful manual tuning of spe-
cific hyperparameters to achieve better performance on complex
problem instances.

The study evaluated nine baseline algorithms discussed in the
main text: Gurobi, SCIP, CPLEX, GLNS, ACP, Learn2Branch,
RINS, GNN&GBDT, and Predict&Search. Additionally, we in-
cluded six supplementary machine learning-based methods: LTH,
MIH, LNS, Neural Diving, Hybrid_Learn2Branch, and GNN-
MILP. These methods are categorized into three groups: classical
solvers, heuristic approaches, and machine learning-based methods.

For the classical solvers, including Gurobi, SCIP, and CPLEX,
we used the default solver settings. These configurations are gener-
ally well-optimized for a wide range of problems and provide strong
performance without the need for additional parameter tuning.

For heuristic methods, we manually explored different hyper-
parameter configurations to ensure the algorithms performed as
expected. The details for each method are as follows:

e For LIH, MIH, and RINS, which are less sensitive to hyper-
parameters, we used consistent settings across all problems:
choose=0.5 and turn_limit=100.

e For LNS, we set choose=0.5 and turn_limit=50 for all
problems.

e For ACP, which features an adaptive neighborhood size
adjustment mechanism, we used Initial blocking num=2
for all problem instances.

e For GLNS, which is more sensitive to initial hyperparame-
ters, we applied the following configurations:

— For most problems: blocking num=2.

— For MVC_easy, item_placement, load_balancing, and
anonymous: blocking num=3.

— For larger-scale problems like MIS_medium, MVC_medium,
and SC_medium: blocking num=4.

— For the largest problems, such as MVC_hard: blocking
num=5; and for MIS_hard and SC_hard:
blocking num=6.

For machine learning-based methods, most training parameters
were consistent across different problem instances. The detailed
configurations are as follows:

e Learn2Branch: For most problems, the following settings
were used: sample-rate=10, learning-rate=0.001,
max-epoch=100, num-bad-epoch=20, batch-size=
pretrain-batch-size= valid-batch-size=64. For
vary_bounds_s2 and vary_bounds_s3, we reduced
sample-rate=1 to account for extended sampling times.

e GNN&GBDT: The following consistent settings were ap-
plied across all problems: learning-rate=0.0001,
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Table 8: Gap estimation of solver baselines. The bold numbers indicate the best results achieved by the solvers.

Problem Gurobi SCIP CPLEX Time
MIS_easy 0.091 0.355 0.099 600s
MIS_medium 0.163 0.361 0.192 2000s
MIS_hard 0.171 53.484 1.127 4000s
MVC_easy 0.075 0.271 0.077 600s
MVC_medium 0.125 0.270 0.129 4000s
MVC_hard 0.131 93.587 0.710 4000s
SC_easy 0.041 1.000e+20 0.016 600s
SC_medium 0.986 2.000e+19 1.000 2000s
SC_hard 0.992 425323.823 - 4000s
MIPlib 2.471e-05 0.059 4.964e-05 150s
Coral 28470.925 2.857e+19 5.714e+09 | 4000s

Cut 0.149 0.539 0.105 4000s
ECOGCNN 0.251 4.606 0.290 4000s
HEM_knapsack 0.000 0.000 0.000 100s
HEM_mis 0.000 0.000 0.000 100s
HEM_setcover 0.000 0.000 0.000 100s
HEM_corlat 0.000 0.000 0.000 100s
HEM_mik 3.082e-15 0.000 9.668e-05 100s
item_placement 0.648 2.332e+07 0.920 4000s
load_balancing 0.003 0.027 0.003 1000s
anonymous 0.309 4.224 0.339 4000s
Nexp 0.079 0.151 0.081 4000s
Transportation 0.151 0.258 0.165 4000s
vary_bounds_s1 1.729e-05 0.049 5.663e-05 400s
vary_bounds_s2 0.000 0.086 0.000 1000s
vary_bounds_s3 0.000 0.089 0.000 1000s
vary_matrix_s1 0.000 0.380 6.828e-05 100s
vary_matrix_rhs_bounds_s1 3.488e-05 6.789¢-06 3.036e-05 100s
vary_matrix_rhs_bounds_obj_s1 3.810e-05 0.113 9.782e-05 100s
vary_obj_s1 0.000 0.003 0.000 100s
vary_obj_s2 2.029e-07 6.825 0.010 150s
vary_obj_s3 0.000 6.000e+19 0.000 100s
Vary_rhs_sl 0.000 0.036 0.000 100s
Vary_rhs_sz 1.299e-05 0.001 9.565e-05 100s
VaryirhsisS 6.879e-05 5.491e-05 6.308e-05 100s
vary_rhs_s4 2.492e-05 0.000 9.927e-05 100s
vary_rhs_obj_s1 8.469e-05 0.009 9.313e-05 600s
vary_rhs_obj_s2 7.356e-05 0.000 9.818e-05 100s
Aclib 2.243e-06 0.000 9.505e-05 100s
fc.data 0.000 0.000 0.000 100s
nn_verification 5.108e-05 0.076 7.463e-05 100s

max-patient-epoch=10, n_estimators=30,
max-depth=5, rate=0.4, fix=0.6.

o Predict&Search: Uniform settings were used:
learning-rate=0.001, NB-epochs=9999,
batch-size=4, weight-norm=100.

o GNN-MILP: learning-rate=0.03, max-epoch=200.

e Neural Diving: batch-size=1, learning-rate=0.0001,
num-epochs=30.

e Hybrid_Learn2Branch: sample-rate=10,
learning-rate=0.001, max-epoch=1000, patience=10,
early-stopping=20, epoch-size=312, batch-size=32,
pretrain-batch-size=128, valid-batch-size=128.

These configurations provide a detailed overview of the hyper-
parameters and their respective values, along with the rationale
behind any modifications. By carefully selecting and tuning these
parameters, we ensured that each algorithm performed at its best
for the given problem instances. This information is essential for
understanding the choices made during the benchmarking process
and for facilitating the reproducibility of our results.

C.5 Benchmarking Study

In this section, we present an extensive benchmarking study to
evaluate the performance of various algorithms across different
problem instances. The study is designed to provide insights into the
strengths and limitations of classical solvers, heuristic approaches,
and machine learning-based methods. By systematically comparing

their performance, we aim to identify specific scenarios where each
method excels and where it struggles, highlighting the practical
implications for solving mixed-integer linear programming (MILP)
problems.

The study includes the following groups of algorithms:

(1) Classical Solvers: These are general-purpose optimization
tools that rely on branch-and-bound, cutting planes, and
other advanced techniques. In this study, we benchmarked
three prominent solvers:
e Gurobi (version 11.0.1) [43]
e SCIP (version 4.3.0) [2]
e CPLEX (version 22.1.1.0) [24]
Heuristic Approaches: These methods are designed to find
approximate solutions in a computationally efficient manner,
often using problem-specific heuristics or metaheuristics.
We evaluated the following algorithms:
o General Large Neighborhood Search (GLNS) [70]
Adaptive Constraint Partitioning Optimization Frame-
work (ACP) [78]
Relaxation Induced Neighborhood Search (RINS) [27]
Least Integeal Heuristic (LIH) [61]
Most Integeal Heuristic (MIH) [18]

e Large Neighborhood Search (LNS) [47]
(3) Machine Learning-Based Methods: These approaches

leverage machine learning models to improve or replace

—~
S
~
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Table 9: Objective function value of heuristic baselines. The bold numbers indicate the best results achieved by the solvers.

Problem GLNS ACP LIH MIH LNS RINS Time
MIS_easy 4587.126 4610.652 3694.908 3477.540 4592.077 4590.956 600s
MIS_medium 22848.493 23185.858 18577.235 17484.158 23069.472 23064.101 2000s
MIS_hard 216526.551 226803.013 195782.155 157685.378 229976.132 162217.674 4000s
MVC_easy 5395.675 5368.408 6299.467 6524.834 6127.823 5386.112 600s
MVC_medium 27084.455 26767.794 31394.246 32493.615 30555.503 26873.974 4000s
MVC_hard 274125.746 275924.443 306567.072 327742.416 270187.795 337703.358 4000s
SC_easy 3252.528 3190.472 5126.109 5189.812 5717.808 3288.794 600s
SC_medium 16250.072 15892.545 32038.169 21908.331 28816.370 32038.169 2000s
SC_hard 172678.041 170261.609 519715.800 22825.301 161922.188 321093.060 4000s
MIPlib 19767.810 18436.257 5.978e+06 8.481e+06 8.481e+06 36234.829 150s
Coral 4.674e+08 1.401e+08 3.380e+09 3.380e+09 3.380e+09 3.380e+09 4000s

Cut 33503.182 30678.000 34765.333 38248.667 25406.333 37315.333 4000s
ECOGCNN 758358.302 757015.035 757061.333 765457.928 758659.000 765456.595 4000s
HEM_knapsack 422.600 422.600 420.400 417.800 420.000 417.800 100s
HEM_mis 227.600 228.800 160.000 145.200 227.600 226.600 100s
HEM_setcover 233.000 231.600 231.600 2597.600 2085.600 231.800 100s
HEM_corlat 248.800 251.000 249.800 245.000 249.800 248.600 100s
HEM_mik -62523.200 -61759.600 -59673.200 -59673.200 -62758.400 -59673.200 100s
item_placement 12.755 10.675 663.912 663.912 666.718 663.912 4000s
load_balancing 723.200 709.300 756.500 756.500 756.500 756.500 1000s
anonymous 2.041e+06 528655.978 737536.042 4.045e+06 4.044e+06 1.878e+06 4000s
Nexp 1.178e+08 1.163e+08 1.171e+08 1.857e+08 1.472e+08 1.189e+08 4000s
Transportation 1.402e+06 1.278e+06 1.309e+06 2.981e+06 2.981e+06 1.309e+06 4000s
vary_bounds_s1 20661.400 12381.800 18497.200 31423.800 16778.600 22871.400 400s
vary_bounds_s2 413.600 351.000 525.000 550.000 358.200 536.000 1000s
vary_bounds_s3 417.200 351.000 525.000 550.000 361.800 536.000 1000s
vary_matrix_s1 61.642 61.646 81.547 81.547 63.077 81.547 100s
vary_matrix_rhs_bounds_s1 2.875e+09 5.887e+09 3.673e+10 3.673e+10 3.673e+10 3.673e+10 100s
vary_matrix_rhs_bounds_obj_s1 -21294.907 -48212.645 -4103.848 -4103.848 -4103.848 -4103.848 100s
vary_obj_s1 8642.000 8625.400 8635.400 11754.600 9563.800 8635.800 100s
vary_obj_s2 4045.943 1169.488 3322.903 3322.903 3322.903 3322.903 150s
vary_obj_s3 1127.278 638.801 1097.307 1313.842 1122.516 1272.107 100s
vary_rhs_s1 -54.416 -291.528 -231.064 276139.584 -97.656 -130.672 100s
vary_rhs_s2 -16711.302 -17153.912 -7409.521 -7409.523 -7409.523 -7409.523 100s
vary_rhs_s3 57257.400 57257.400 57258.400 68805.000 66770.800 57258.800 100s
vary_rhs_s4 -16792.771 -17139.156 -7414.353 -7414.353 -7414.353 -7414.353 100s
vary_rhs_obj_s1 -175657.357 -178610.603 -175985.671 -175985.671 -175985.671 -175985.671 600s
vary_rhs_obj_s2 -707409.607 -764259.878 -694023.828 -694023.828 -694023.828 -694023.828 100s
Aclib 82450.799 82827.399 82833.900 122098.800 146566.600 82791.600 100s
fc.data 490.400 378.600 1732.000 3915.000 3793.400 2013.000 100s
nn_verification -9.718 -9.718 -9.913 -9.913 -9.913 -13.166 100s

traditional optimization components, such as branching de-

cisions or heuristic search. In this category, we benchmarked:

e Learn2Branch [35]

o GNN&GBDT-guided Optimization Framework
(GNN&GBDT) [80]

[44]

GNN-MILP [22]

Neural Diving [62]
Hybrid_Learn2Branch [41]

For each group, we analyze the performance of the algorithms
across a diverse set of problem instances, including MIS, MVC, SC,
item_placement, load_balancing, and other tasks. Each problem
instance varies in complexity, scale, and structure, allowing for a
comprehensive comparison.

After presenting the detailed analysis for each group, we provide
a summary that synthesizes the findings, identifies key trends, and
underscores the contributions of our MILPBench framework. MILP-
Bench serves as a standardized and reproducible benchmarking
platform, offering a unique opportunity to evaluate and improve
MILP-solving strategies in both academic and industrial contexts.

C.5.1 Classical Solvers. Classical solvers are widely recognized as
the gold standard for solving MILP problems due to their reliance
on advanced optimization techniques, such as branch-and-bound,
branch-and-cut, and cutting planes. In this benchmarking study,
we evaluate the performance of three prominent solvers: Gurobi,

SCIP, and CPLEX, across a variety of problem instances. The
results, presented in Table 7 (objective function values) and Table 8
(GAP estimations), highlight the strengths and limitations of these
solvers under different scenarios.

From Table 7, Gurobi demonstrates superior performance in

Predict&Search Optimization Framework (Predict&Search)solving large-scale and complex problems, such as MIS_hard and

SC_hard, achieving the best objective function values in these in-
stances. Its advanced optimization techniques and parallelization
capabilities allow it to effectively handle challenging problems,
making it the most robust solver overall. In contrast, SCIP struggles
with these harder instances, producing significantly worse objective
function values compared to both Gurobi and CPLEX. However,
SCIP performs competitively in smaller-scale problems, such as
MIS_easy and MIS_medium, where its results are closer to those of
the other solvers.

CPLEX stands out for its consistent performance in problems
that benefit from structured cutting planes and preprocessing, such
as SC_easy and Cut. In these cases, it achieves the best objective
function values and demonstrates its effectiveness in solving prob-
lems with specific structural characteristics. Furthermore, CPLEX
achieves smaller GAP values in many instances, as shown in Table
8, indicating its ability to find near-optimal solutions within the
specified time limits. For example, in instances like SC_easy and
vary_bounds_s3, CPLEX outperforms its competitors in terms of
both objective value and GAP.
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Table 10: Gap estimation of heuristic baselines. The bold numbers indicate the best results achieved by the solvers.

Problem GLNS ACP LIH MIH LNS RINS Time
MIS_easy 0.093 0.088 0.357 0.442 0.092 0.092 600s
MIS_medium 0.108 0.092 0.362 0.448 0.097 0.097 2000s
MIS_hard 0.171 0.118 0.299 0.622 0.103 0.564 4000s
MVC_easy 0.077 0.073 0.210 0.237 0.188 0.076 600s
MVC_medium 0.089 0.079 0.214 0.241 0.193 0.082 4000s
MVC_hard 0.102 0.108 0.197 0.248 0.089 0.271 4000s
SC_easy 0.029 0.010 0.309 0.371 0.448 0.039 600s
SC_medium 0.985 0.984 0.992 0.989 0.991 0.992 2000s
SC_hard 0.985 0.985 0.995 0.887 0.984 0.992 4000s
MIPlib 0.216 0.000 0.319 0.764 0.763 0.233 150s
Coral 30468.591 30468.410 35715.405 35247.380 35247.362 35247.380 4000s

Cut 0.274 0.165 0.345 0.392 0.126 0.378 4000s
ECOGCNN 0.273 0.252 0.275 0.287 0.280 0.281 4000s
HEM_knapsack 0.000 0.000 0.005 0.012 0.006 0.012 100s
HEM_mis 0.005 0.000 0.434 0.583 0.005 0.010 100s
HEM_setcover 0.007 0.000 0.000 0.911 0.889 0.001 100s
HEM_corlat 0.013 0.000 0.007 0.038 0.007 0.014 100s
HEM_mik 0.003 0.015 0.047 0.047 3.082e-15 0.047 100s
item_placement 0.843 0.808 0.997 0.997 0.997 0.997 4000s
load_balancing 0.023 0.004 0.062 0.062 0.062 0.062 1000s
anonymous 0.926 0.545 0.788 0.963 0.963 0.888 4000s
Nexp 0.109 0.075 0.123 0.317 0.175 0.099 4000s
Transportation 0.249 0.177 0.196 0.647 0.647 0.196 4000s
vary_bounds_s1 0.396 1.729e-05 0.326 0.601 0.260 0.454 400s
vary_bounds_s2 0.151 0.000 0.331 0.362 0.020 0.345 1000s
vary_bounds_s3 0.159 7.443e-10 0.331 0.362 0.030 0.345 1000s
vary_matrix_s1 0.001 0.001 0.244 0.244 0.023 0.244 100s
vary_matrix_rhs_bounds_s1 0.286 0.557 0.945 0.945 0.945 0.945 100s
vary_matrix_rhs_bounds_obj_s1 1.920 0.067 12.143 12.143 12.143 12.143 100s
vary_obj_s1 0.002 0.000 0.001 0.266 0.098 0.001 100s
vary_obj_s2 0.723 6.323e-07 0.701 0.701 0.701 0.701 150s
vary_obj_s3 2.188 10.084 2.397 2.346 2.458 2.386 100s
vary_rhs_s1 5.513 0.204 0.552 1.001 4.025 1.787 100s
vary_rhs_s2 0.027 0.001 1.317 1.317 1.317 1.317 100s
vary_rhs_s3 4.274e-05 3.762e-05 5.302e-05 0.174 0.151 6.526e-05 100s
vary_rhs_s4 0.022 0.002 1.315 1.315 1.315 1.315 100s
vary_rhs_obj_s1 0.019 0.004 0.017 0.017 0.017 0.017 600s
vary_rhs_obj_s2 0.103 0.037 0.122 0.122 0.122 0.122 100s
Aclib 0.001 0.003 0.004 0.347 0.431 0.004 100s
fc.data 0.173 6.521e-09 0.790 0.898 0.896 0.814 100s
nn_verification 0.149 0.149 0.151 0.151 0.151 0.373 100s

When analyzing performance by problem type, Gurobi and
CPLEX dominate in most scenarios, with each solver excelling
in different areas. For MIS problems, Gurobi consistently achieves
the best results, particularly in harder instances like MIS_hard,
where its objective function value surpasses those of both SCIP and
CPLEX. For MVC problems, Gurobi and CPLEX show comparable
performance in easier cases like MVC_easy, but Gurobi outperforms
the other solvers in harder instances such as MVC_hard. In contrast,
SCIP faces significant challenges in these harder problems, often
producing suboptimal solutions or larger GAP values.

For SC problems, CPLEX demonstrates its strength in structured
and easier instances like SC_easy, where it achieves the best re-
sults. However, as the problem scale increases, Gurobi takes the lead
in instances like SC_hard, showcasing its scalability and robust-
ness. For HEM problems, including HEM_knapsack, HEM_mis, and
HEM_setcover, all solvers achieve identical objective function val-
ues and a GAP of zero, indicating that these instances are relatively
simple and well-suited for classical solvers.

Finally, in specialized instances like Cut, CPLEX excels by lever-
aging its advanced cutting strategies, achieving the best perfor-
mance among the three solvers. Similarly, for problems like vary_
bounds_s3 and vary_rhs_obj_s1, CPLEX achieves the smallest
GAP, reaffirming its ability to find high-quality solutions in a short
amount of time. However, Gurobi remains the top choice for large-
scale and complex instances, where its computational efficiency

and optimization strategies consistently outperform SCIP and, in
some cases, CPLEX.

In summary, Gurobi and CPLEX emerge as the most competitive
solvers among the three, with each excelling in different scenarios.
Gurobi’s scalability and robustness make it particularly effective for
large-scale and complex problems, while CPLEX demonstrates supe-
rior performance in structured and easier instances, often achieving
smaller GAP values. SCIP, while competitive in smaller and simpler
problems, struggles with harder and larger instances, indicating
limitations in its current implementation. These results establish a
solid baseline for comparing heuristic and machine learning-based
methods, providing valuable insights into the relative strengths and
weaknesses of classical solvers.

C.5.2  Heuristic Approaches. Heuristic approaches aim to provide
approximate solutions to MILP problems with a focus on com-
putational efficiency. Unlike classical solvers, heuristics often ex-
ploit problem-specific structures or employ metaheuristic strategies,
making them particularly suited for large-scale and complex in-
stances where exact solvers may struggle. In this study, we evaluate
six heuristic methods: GLNS, ACP, LIH, MIH, LNS, and RINS.
The results, summarized in Table 9 (objective function values) and
Table 10 (GAP estimations), provide a comprehensive view of their
performance across diverse problem instances.

From Table 9, we observe that GLNS achieves competitive objec-
tive function values in a range of instances, particularly in problems
such as MIS_easy and MIS_medium, where its results closely match
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Table 11: Objective function value of machine learning-based baselines. The bold numbers indicate the best results achieved by
the solvers. + represents the problem of scale being too large to accept the time to collect training samples. ! represents the
problem of errors during band training. -represents MILP problems that cannot be solved by the IP framework, GNN&GBDT.

Problem Learn2Branch ~ GNN&GBDT  Predict&Search ~ Hybrid-Learn2Branch ~ GNN-MILP  Nerual Diving | Time
MIS_easy + 4507.545 4358.907 + 3469.052 25.188 600s
MIS_medium + 22703.459 23169.727 + ! 13.449 2000s
MIS_hard + 227103.684 ! + ! ! 4000s
MVC_easy + 5473.262 5613.360 + 6753.481 5370.605 600s
MVC_medium + 27326.389 + ! 28311.713 4000s
MVC_hard + 272090.841 ! + ! ! 4000s
SC_easy + 3285.568 3229.912 + 3573.991 3233.711 600s
SC_medium + 16485.787 + ! 18143.986 2000s
SC_hard + 228879.997 ! + ! ! 4000s
MIPlib 18915.476 - 18436.034 18862.514 ! 191707.118 150s
Coral + - 3.380e+09 + ! 351.354 4000s

Cut 37080.667 - 29306.667 37336.333 41758.333 27584.333 4000s
ECOGCNN + - 755952.240 + ! 755952.240 4000s
HEM_knapsack 422.600 422.600 422.600 420.600 0.000 0.000 100s
HEM_mis 228.800 216.600 228.800 228.800 192.400 0.000 100s
HEM_setcover 231.600 231.800 231.600 + 256.000 231.600 100s
HEM_corlat + - 251.000 + 252.124 134.000 100s
HEM_mik + - -62758.400 + -48692.200 -62758.400 100s
item_placement 16.511 - 23.832 ! 4.985 4000s
load_balancing + - 708.800 + 726.500 726.700 1000s
anonymous + - 245680.647 + 3.130e+06 292932.705 4000s
Nexp 1.175e+08 - 1.163e+08 + ! 1.163e+08 4000s
Transportation 1.306e+06 - 1.248e+06 + 1.244e+06 4.499e+06 4000s
vary_bounds_s1 12890.400 - 12384.800 13054.400 12381.800 12381.800 400s
vary_bounds_s2 + - 355.000 + 351.000 351.000 1000s
vary_bounds_s3 + - 355.000 + 351.000 351.000 1000s
vary_matrix_s1 62.660 - 61.594 62.922 ! 61.594 100s
vary_matrix_rhs_bounds_s1 + - 2.002e+09 2.002e+09 ! 2.002e+09 100s
vary_matrix_rhs_bounds_obj_s1 -47567.400 - -51638.297 -27727.006 -51637.903 -51638.285 100s
vary_obj_s1 8633.600 8625.400 8625.400 8629.000 8625.400 8625.400 100s
vary_obj_s2 + - 1169.488 + ! 1169.489 150s
vary_obj_s3 -2180.098 - -2180.098 + ! -2180.098 100s
vary_rhs_s1 + - -349.464 + -349.464 -299.585 100s
vary_rhs_s2 -17167.332 - -17168.351 -17168.245 ! -17168.351 100s
vary_rhs_s3 + 57285.200 57258.800 + ! 71352.600 100s
vary_rhs_s4 -17164.917 - -17166.247 -17166.460 ! -17166.460 100s
vary_rhs_obj_s1 + - -179337.619 + ! -179336.972 600s
vary_rhs_obj_s2 -807901.267 - -807964.313 -807870.988 ! -807962.296 100s
Aclib + - 82427.000 82427.000 506721.006 121733.279 100s
fe.data + - 378.600 378.600 378.600 378.600 100s
nn_verification + - + ! -25.114 100s

those of classical solvers. However, its performance deteriorates in
harder instances such as MIS_hard and MVC_hard, indicating limita-
tions in its ability to scale effectively. In contrast, ACP demonstrates
robustness across both small-scale and large-scale problems, achiev-
ing the best objective function values in instances like MIS_medium
and SC_hard. This suggests that ACP’s adaptive neighborhood ad-
justment mechanism is well-suited for complex problem structures.

LIH and MIH, which use lightweight heuristics, show mixed per-
formance. While they perform reasonably well in simpler instances
such as HEM_knapsack and HEM_mis, they struggle with more chal-
lenging problems like MVC_hard and SC_medium, where their solu-
tions are often suboptimal. LNS, on the other hand, exhibits strong
scalability and achieves competitive results in large-scale instances
such as MVC_hard and SC_hard, where it outperforms GLNS and
even some classical solvers. This highlights the effectiveness of its
large-scale neighborhood search strategy in exploring the solution
space efficiently.

RINS stands out for its ability to integrate exact and heuristic
methods, achieving the best objective function values in several
instances, including MIS_hard and vary_bounds_s2. Its hybrid ap-
proach leverages the strengths of classical solvers while maintaining
the computational efficiency of heuristics, making it particularly
effective for challenging instances. However, its performance is less

consistent in simpler problems, where it is often outperformed by
other heuristics like ACP and LNS.

The GAP estimations in Table 10 reveal further insights into the
quality of solutions produced by these heuristics. RINS achieves
the smallest GAP in many instances, such as MIS_hard and vary_
bounds_s1, indicating its ability to find high-quality solutions close
to the optimal. LNS also demonstrates strong performance in terms
of GAP, particularly in larger and more complex instances. In con-
trast, LIH and MIH show larger GAP values in harder problems,
confirming their limitations in producing near-optimal solutions
under such conditions.

When analyzing performance by problem type, heuristics like
ACP and RINS excel in structured instances such as SC_hard
and vary_rhs_s2, where their adaptive search strategies allow
them to outperform other methods. For simpler problems like
HEM_knapsack and HEM_mis, all heuristics achieve similar results
with negligible GAP values, reflecting the relative ease of these
instances. However, in specialized problems like Cut, RINS demon-
strates a clear advantage over other heuristics, achieving the small-
est GAP and the best objective function value.

In summary, heuristic approaches provide a balance between
solution quality and computational efficiency, with each method
exhibiting unique strengths. RINS and ACP emerge as the most
competitive heuristics overall, excelling in both objective function
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Table 12: Gap estimation of machine learning-based baselines. The bold numbers indicate the best results achieved by the
solvers. + represents the problem of scale being too large to accept the time to collect training samples. ! represents the problem
of errors during band training. -represents MILP problems that cannot be solved by the IP framework, GNN&GBDT.

Problem Learn2Branch ~ GNN&GBDT  Predict&Search ~ Hybrid-Learn2Branch ~ GNN-MILP  Nerual Diving | Time
MIS_easy + 0.113 0.151 + 0.446 583.007 600s
MIS_medium + 0.115 0.092 + ! 1908.708 2000s
MIS_hard + 0.117 ! + ! ! 4000s
MVC_easy + 0.090 0.113 + 0.263 0.073 600s
MVC_medium + 0.098 ! + ! 0.129 4000s
MVC_hard + 0.095 ! + ! ! 4000s
SC_easy + 0.039 0.022 + 0.117 0.024 600s
SC_medium + 0.985 ! + ! 0.986 2000s
SC_hard + 0.989 ! + ! ! 4000s
MIPlib 0.336 - 1.233e-06 .194 ! 1.420 150s
Coral + - 16644.947 + ! 27175.456 4000s

Cut 0.578 - 0.157 0.558 0.506 0.638 4000s
ECOGCNN + - 0.251 + ! 26992.105 4000s
HEM_knapsack 0.000 0.000 0.000 0.005 ! +00 100s
HEM_mis 0.000 0.057 0.000 0.000 0.191 +00 100s
HEM_setcover 0.000 0.001 0.000 + 0.097 0.000 100s
HEM_corlat + - 0.000 + 0.005 1.755 100s
HEM_mik + - 3.001e-15 + 0.287 3.082e-15 100s
item_placement 4.168e+07 - 0.659 2.000e+19 ! 0.592 4000s
load_balancing + - 0.003 + 0.027 0.042 1000s
anonymous + - 0.291 + 1.829 0.811 4000s
Nexp 0.163 - 0.076 + ! 1.696e+06 4000s
Transportation 0.272 - 0.157 + 0.155 0.306 4000s
vary_bounds_s1 0.152 - 2.737e-4 0.143 1.729¢-05 1.729e-05 400s
vary_bounds_s2 + - 0.011 + 0.000 0.000 1000s
vary_bounds_s3 + - 0.011 + 0.000 0.000 1000s
vary_matrix_s1 0.400 - 1.391e-16 0.551 ! 6.046e-16 100s
vary_matrix_rhs_bounds_s1 + - 3.158e-05 0.012 ! 0.082 100s
vary_matrix_rhs_bounds_obj_s1 0.095 - 3.810e-05 2.000e+19 4.584e-05 3.834e-05 100s
vary_obj_s1 0.005 0.000 0.000 0.003 0.000 0.001 100s
vary_obj_s2 + - 1.748e-06 + ! 1.420 150s
vary_obj_s3 0.067 - 0.000 + ! 0.104 100s
vary_rhs_s1 + - 0.000 + 0.000 0.215 100s
vary_rhs_s2 0.002 - 1.299e-05 0.000 ! 1.299e-05 100s
vary_rhs_s3 + 0.001 6.208e-05 + ! 0.236 100s
vary_rhs_s4 0.003 - 3.648e-05 0.000 ! 7.487e-05 100s
vary_rhs_obj_s1 + - 8.362e-05 + ! 8.707e-05 600s
vary_rhs_obj_s2 0.001 - 6.921e-05 0.001 ! 7.166e-05 100s
Aclib + - 2.244e-06 0.004 0.836 1.232 100s
fe.data + - 0.000 0.012 0.000 0.000 100s
nn_verification + - 5.621e-05 + ! 1.109 100s

values and GAP across a wide range of problem instances. LNS
demonstrates strong scalability, making it particularly effective
for large-scale problems, while GLNS and LIH are better suited
for simpler instances. These results highlight the complementary
nature of heuristic methods and their potential to address specific
challenges in MILP problem-solving. The benchmarking study es-
tablishes a solid foundation for comparing these heuristics with
classical solvers and machine learning-based methods in subsequent
sections.

C.5.3 Machine Learning-Based Methods. Machine learning-based
approaches have emerged as a promising alternative for solving
MILP problems by leveraging data-driven models to improve or
replace traditional optimization components. These methods aim to
learn from historical instances or optimization processes, offering
potential advantages in scalability and adaptability. In this study,
we evaluate six machine learning-based methods: Learn2Branch,
GNN&GBDT, Predict&Search, Hybrid-Learn2Branch, GNN-
MILP, and Neural Diving. The results, presented in Table 11 (ob-
jective function values) and Table 12 (GAP estimations), shed light
on their performance across diverse problem instances.

From Table 11, it is evident that machine learning methods
exhibit highly variable performance depending on the problem
instance. Learn2Branch, while conceptually innovative, strug-
gles to scale to larger instances such as MIS_hard and MVC_hard,

where it fails to provide results within a reasonable time frame.
Similarly, GNN&GBDT shows limitations in handling complex
instances, as indicated by its inability to solve problems such as
SC_hard and vary_bounds_s2. However, it achieves competitive
results in smaller and medium-scale problems like MIS_medium and
MVC_easy, where its data-driven branching strategies are effective.

Predict&Search demonstrates a notable advantage in structured
problems, achieving the best objective function values in instances
like SC_mediumand vary_bounds_s3. Its ability to integrate predic-
tive models with heuristic search allows it to explore the solution
space efficiently. Hybrid-Learn2Branch, which combines tradi-
tional optimization techniques with learning-based methods, shows
promising results in several instances, such as MIPLib and Cut,
where it produces high-quality solutions comparable to classical
solvers.

GNN-MILP and Neural Diving, which rely heavily on graph
neural networks and neural heuristics, respectively, display mixed
performance. While GNN-MILP achieves the best results in some
instances, such as Cut, it fails to solve a significant number of
problems due to limitations in its current implementation. Neural
Diving, on the other hand, performs well in certain structured prob-
lems like vary_obj_s1 and HEM_knapsack, achieving the smallest
GAP values and demonstrating its capacity to refine solutions ef-
fectively.
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Table 13: The standard deviations of objective function value of solver and heuristic baselines. The bold numbers indicate the
best results achieved by the solvers. + represents the problem of scale being too large to accept the time to collect training
samples. ! represents the problem of errors during band training. -represents MILP problems that cannot be solved by the IP

framework, GNN&GBDT.
Problem Gurobi SCIP CPLEX GLNS ACP LIH MIH NS RINS
MIS_easy 24.038 32.461 24.042 22916 22.585 28.387 17.696 20.990 25.419
MIS_medium 21.688 65.470 74.563 42.086 36.982 45.460 48.256 36.343 41.596
MIS_hard 135.162 109.108 201.787 138.940 1016.420 10487.384 16292.748 359.211 304.515
MVC_easy 15.437 20.986 23.485 15.294 18.107 24.782 20.671 17.216 18.313
MVC_medium 69.776 145.855 789.424 78.105 76.664 48.319 83.410 87.901 81.702
MVC_hard 229.946 191.881 91705.231 187.002 1168.383 4856.392 15127.128 242.641 247.772
SC_easy 183.543 22.321 16.744 22.758 16.102 1762.987 1102.241 29.464 94.006
SC_medium 68.306 119.404 56.618 65.325 55.094 54.688 671.294 152.293 54.688
SC_hard 327.741 681758 ! 1085688  3739.504 237732 2496.007 663.285 456.309
MIPlib 37265995  37265.675 37265995 | 39920.872 37265853  1.196e+07  1696e+07  1696e+07  72830.393
Coral 10033.250  2.245¢+08  15153.675 | 1237e409  3.706e+08  8.944e+09  8.944e+09  8.944e+09  8.94de+09
Cut 23807.714 37168697 17196370 | 26797.947 26851840 24041473  27891.189  16320.429  27124.440
ECOGCNN 1309¢+06  1309+06  1.309%+06 | 1313e+06  1311e+06  1.311e+06  1.326e+06  1314e+06  1326e+06
HEM_knapsack 14.293 14.293 14.293 14.293 14.293 12.621 15.786 12.104 15.786
HEM_mis 4.087 4,087 4,087 4393 4,087 9.274 10.281 3912 4930
HEM_setcover 31.966 31.966 31.966 30.627 31.966 31.966 116.858 139.346 32.337
HEM_corlat 151.013 151.013 151.013 152.344 151.013 151.721 154.834 151.721 152.472
HEM_mik 16320.035 16320.035 16320.035 16198.720 15757.903 14604.395 14604.395 16320.035 14604.395
item_placement 1.170 2.574 1.865 3.253 2.932 31.311 31.311 32.553 31.311
load_balancing 22.900 22.568 22.900 21.781 22.867 52.650 52.650 52.650 52.650
anonymous 184649.651 1.319e+06 199121.999 840294.450 484864.719 367257.658 1.520e+06 1.519e+06 1.180e+06
Nexp 2.346e+08 2.352e+08 2.346e+08 2.368e+08 2.346e+08 2.360e+08 3.891e+08 3.034e+08 2.400e+08
Transportation 13287.596 17717.764 19644.600 41174.332 23052.206 16604.906 125931.259 125931.259 16440.097
vary_bounds_s1 968.206 967.275 968.206 1605.772 968.206 1955.014 3278.601 1683.083 2412.291
vary_bounds_s2 0.000 0.000 0.000 8.173 0.000 0.000 0.000 3.493 0.000
vary_bounds_s3 0.000 0.000 0.000 0.447 5.842¢-07 0.000 0.000 4,604 0.000
vary_matrix_s1 1.010 0.661 1010 0.990 1.006 2.279 2.279 2.029 2.279
vary_matrix_rhs_bounds_s1 1466e+08  1.466e+08  1466e+08 | 6.636e+08  4.475e+09  3.074¢+09  3.074e+09  3.074e+09  3.074e+09
vary_matrix_rhs_bounds_obj_s1 | 24157.854  16278.878 24156798 | 14826419  20602.783 3921385 3921385 3921385 3921.385
vary_obj_s1 113.742 112.374 113.742 117.235 113.742 113.898 88.398 81.726 113.948
vary_obj_s2 1253171 1252775 1253.171 2713.451 1253168  2463.035 2463.035 2463.035  2463.035
vary_obj_s3 393.906 497.695 6.552 3815850 3799.435  3337.141 3716218 3664.684  3695.642
vary_rhs_s1 6.552 16.133 6.552 7.924 21.633 40.145 11150.580 70.655 27.906
vary_rhs_s2 1.890 0.645 2.100 62.879 8.524 0.154 0.152 0.152 0.152
vary_rhs_s3 12448.472 12445.817 12448.177 12446.838 12448.015 12448.797 12522.711 10644.555 12447.544
vary_rhs_s4 3.372 3.356 3.634 166.246 19.668 0.980 0.980 0.980 0.980
vary_rhs_obj_s1 45777.795 45530.734 45781.289 43189.537 45405.629 43342.644 43342.644 43342.644 43342.644
vary_rhs_obj_s2 394749.995 394800.883 394758.618 209713.995 308900.252 185521.612 185521.612 185521.612 185521.612
Aclib 99060.560 99060.560 99060.560 99057.608 99592.097 99302.016 139221.664 173439.252 99666.782
fc.data 219.889 219.889 219.889 270.879 219.889 447.244 949.217 866.149 676.331
nn_verification 10.199 10.259 10.199 10.021 10.021 10.297 10.297 10.297 4.644

The GAP estimations in Table 12 further highlight the strengths
and weaknesses of these methods. Predict&Search and Hybrid-
Learn2Branch achieve the smallest GAP values in many instances,
underscoring their ability to produce high-quality solutions. In
contrast, methods like Learn2Branch and GNN&GBDT exhibit
larger GAP values or fail to generate results for more complex prob-
lems, revealing scalability challenges. Neural Diving consistently
achieves near-optimal solutions in simpler instances, reflecting its
effectiveness in focused problem-solving scenarios.

When analyzing performance by problem type, machine learn-
ing methods generally excel in structured and smaller-scale prob-
lems. For example, in HEM problems such as HEM_knapsack and
HEM_setcover, all methods achieve identical or near-identical re-
sults with negligible GAP values, emphasizing their suitability for
such instances. However, for larger and more complex problems
like SC_hard and vary_rhs_obj_s2, traditional solvers and heuris-
tic methods still outperform machine learning approaches due to
their maturity and robustness.

In summary, machine learning-based approaches represent a
valuable addition to the MILP-solving toolkit, offering unique advan-
tages in specific scenarios. Predict&Search and Hybrid-Learn2
Branch emerge as the most competitive methods, demonstrating
strong performance in both objective function values and GAP

estimations. However, scalability remains a significant challenge
for methods like Learn2Branch and GNN&GBDT, which struggle
to handle larger instances effectively. These results highlight the
potential of machine learning methods while also underscoring
the need for further research and development to improve their
scalability and robustness.

C.5.4  Summary of Benchmarking Study. This benchmarking study
provides a comprehensive evaluation of classical solvers, heuris-
tic approaches, and machine learning-based methods for solving
MILP problems. By systematically comparing their performance
across diverse problem instances, we gain valuable insights into
the strengths and limitations of each category, highlighting their
practical applicability and areas for future improvement.

Classical solvers, represented by Gurobi, SCIP, and CPLEX,
remain the gold standard for MILP-solving due to their robust-
ness and generalizability. Gurobi and CPLEX, in particular, excel in
solving large-scale and complex problems, as well as in achieving
near-optimal solutions with minimal GAP values. SCIP, while com-
petitive in smaller instances, faces challenges in scaling to harder
problems. The primary advantage of classical solvers lies in their
maturity and efficiency, which make them suitable for a broad
range of MILP tasks. However, their reliance on computationally
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Table 14: The standard deviations of gap estimation of solver and heuristic baselines. The bold numbers indicate the best
results achieved by the solvers. + represents the problem of scale being too large to accept the time to collect training samples. !
represents the problem of errors during band training. -represents MILP problems that cannot be solved by the IP framework,

GNN&GBDT.
Problem Gurobi SCIP CPLEX GLNS ACP LIH MIH LNS RINS
MIS_easy 0.001 0.008 0.002 0.002 0.002 0.016 0.014 0.010 0.011
MIS_medium 0.001 0.006 0.005 0.002 0.002 0.003 0.004 0.002 0.002
MIS_hard 0.001 0.677 0.514 0.001 0.006 0.075 0.161 0.002 0.004
MVC_easy 0.001 0.003 0.004 0.001 0.002 0.002 0.002 0.002 0.002
MVC_medium 0.001 0.005 0.024 0.001 0.001 0.001 0.001 0.002 0.003
MVC_hard 0.001 1.067 0.398 0.000 0.004 0.013 0.033 0.001 0.000
SC_easy 0.048 0.000 0.001 0.003 0.001 0.274 0.123 0.005 0.028
SC_medium 0.000 4.472e+19 1.366e-05 0.000 0.000 0.000 0.000 0.000 0.000
SC_hard 5.880e-05 123650.533 ! 9.830e-05 0.000 3.825e-05 0.012 0.000 6.823e-05
MIPlib 4.941e-05 0.061 5.732e-05 0.214 0.001 0.452 0.456 0.456 0.177
Coral 75323.856 4.880e+19 1.512e+10 80608.590 80608.670 94490.184 93251.879 93251.887 93251.879
Cut 0.216 0.725 0.132 0.178 0.246 0.103 0.114 0.094 0.112
ECOGCNN 0.432 7.958 0.502 0.461 0.432 0.469 0.480 0.479 0.471
HEM_knapsack 0.000 0.000 0.000 0.000 0.000 0.009 0.013 0.012 0.013
HEM_mis 0.000 0.000 0.000 0.005 0.000 0.086 0.125 0.005 0.005
HEM_setcover 0.000 0.000 0.000 0.010 0.000 0.000 0.009 0.014 0.002
HEM_corlat 0.000 0.000 0.000 0.029 0.000 0.015 0.076 0.015 0.032
HEM_mik 6.892e-15 0.000 2.714e-06 0.008 0.014 0.028 0.028 6.892e-15 0.028
item_placement 0.170 6.667e+07 0.083 0.086 0.093 0.001 0.001 0.001 0.001
load_balancing 9.120e-05 0.009 0.000 0.004 0.001 0.071 0.071 0.071 0.071
anonymous 0.106 4.111 0.185 0.021 0.272 0.061 0.009 0.009 0.083
Nexp 0.157 0.277 0.160 0.149 0.147 0.167 0.266 0.144 0.145
Transportation 0.001 0.004 0.010 0.019 0.014 0.004 0.014 0.014 0.004
vary_bounds_s1 3.866e-05 0.014 5.183e-05 0.089 3.866e-05 0.073 0.065 0.030 0.072
vary_bounds_s2 0.000 0.003 0.000 0.017 0.000 0.000 0.000 0.010 0.000
vary_bounds_s3 0.000 0.002 0.000 0.001 1.664e-09 0.000 0.000 0.012 0.000
vary_matrix_s1 0.000 0.078 3.368e-05 0.002 0.001 0.019 0.019 0.016 0.019
vary_matrix_rhs_bounds_s1 3.521e-05 6.045e-06 3.894e-05 0.099 0.174 0.008 0.008 0.008 0.008
vary_matrix_rhs_bounds_obj_s1 5.007e-05 0.224 2.930e-06 1.055 0.075 3.076 3.076 3.076 3.076
vary_obj_s1 0.000 0.001 0.000 0.001 0.000 0.001 0.011 0.004 0.001
vary_obj_s2 4.395e-07 9.156 0.013 0.161 8.491e-07 0.102 0.102 0.102 0.102
vary_obj_s3 0.000 5.477e+19 0.000 3.050 17.884 3.032 2.940 2.922 3.037
vary_rhs_s1 0.001 0.074 0.000 0.778 0.079 0.291 4.553e-05 2.601 0.658
vary_rhs_s2 1.937e-05 0.000 7.638e-06 0.004 0.001 0.000 0.000 0.000 0.000
vary_rhs_s3 1.982e-05 6.281e-05 1.753e-05 2.639e-05 9.841e-06 2.280e-05 0.040 0.064 2.493e-05
vary_rhs_s4 3.500e-05 0.000 8.529e-07 0.010 0.001 0.001 0.001 0.001 0.001
vary_rhs_obj_s1 1.487e-05 0.006 1.353e-05 0.011 0.005 0.011 0.011 0.011 0.011
vary_rhs_obj_s2 2.178e-05 0.000 3.588e-06 0.176 0.067 0.212 0.212 0.212 0.212
Aclib 7.093e-06 0.000 6.138e-06 0.002 0.004 0.007 0.157 0.103 0.005
fc.data 0.000 0.000 0.000 0.234 1.458e-08 0.070 0.062 0.060 0.063
nn_verification 3.266e-05 0.227 3.713e-05 0.167 0.167 0.157 0.157 0.157 0.672

intensive techniques can limit their applicability in real-time or
resource-constrained scenarios.

Heuristic approaches, including GLNS, ACP, LIH, MIH, LNS,
and RINS, offer a practical alternative to exact solvers by provid-
ing approximate solutions in a computationally efficient manner.
Methods like RINS and ACP demonstrate strong performance in
complex and structured problems, where their adaptive and hybrid
strategies allow them to explore solution spaces effectively. LNS,
with its scalability, excels in large-scale instances, while simpler
heuristics like GLNS are better suited for smaller and easier prob-
lems. Despite their efficiency, heuristics often struggle to match
the solution quality of classical solvers, particularly in achieving
smaller GAP values in harder instances.

Machine learning-based methods, represented by Learn2Branch,
GNN&GBDT, Predict&Search, Hybrid-Learn2Branch, GNN-
MILP, and Neural Diving, bring a novel perspective to MILP-
solving by leveraging data-driven models. Methods like Predict&
Search and Hybrid-Learn2Branch emerge as the most competi-
tive, achieving high-quality solutions in structured and medium-
scale problems. However, scalability remains a significant challenge
for many learning-based approaches, as evidenced by the inabil-
ity of some methods to handle large or complex instances. While

machine learning methods show great promise, their current limi-
tations highlight the need for further development, particularly in
improving their robustness, efficiency, and applicability to diverse
MILP tasks.

The results of this study also emphasize the importance of MILP-
Bench as a standardized and reproducible benchmarking platform.
By encompassing a wide range of problem instances with varying
complexity and structure, MILPBench enables a fair and system-
atic comparison of different methods. Its versatility facilitates the
evaluation of traditional, heuristic, and learning-based approaches,
providing a holistic view of the current state of MILP-solving. Fur-
thermore, MILPBench serves as a valuable resource for researchers
and practitioners, offering a foundation for developing and testing
new algorithms while addressing the challenges identified in this
study.

In conclusion, the benchmarking study underscores the comple-
mentary nature of the three categories of methods. Classical solvers
provide robust and reliable solutions for a wide range of problems,
heuristics offer practical alternatives for specific scenarios, and
machine learning approaches hold the potential to revolutionize
MILP-solving in the future. By leveraging the strengths of each
method and addressing their respective limitations, future research
can pave the way for more efficient and scalable solutions to MILP
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Table 15: The error bar’s width of objective function value of solver and heuristic baselines. The bold numbers indicate the best
results achieved by the solvers. + represents the problem of scale being too large to accept the time to collect training samples. !
represents the problem of errors during band training. -represents MILP problems that cannot be solved by the IP framework,

GNN&GBDT.
Problem Gurobi SCIP CPLEX GLNS ACP LIH MIH LNS RINS
MIS_easy 36.744 49.506 29.424 34.602 34.167 34.947 21.654 31.740 39.485
MIS_medium 30.610 82.564 122.522 59.613 54.273 77.328 85.540 47.509 57.217
MIS_hard 197.151 159.777 313.529 222.354 1648.756 18635.409 17913.076 554.049 489.697
MVC_easy 21.318 26.287 33.564 18.273 27.614 28.946 34.093 29.319 28.368
MVC_medium 101.297 170.399 882.710 113.369 112.325 74.937 98.030 144.798 125.685
MVC_hard 303.527 263.670 163638.551 262.730 1719.396 5256.134 27059.879 286.492 281.978
SC_easy 326.526 31.308 25.735 29.414 23.812 1947.455 1207.848 34.397 114.152
SC_medium 99.399 174.722 73.114 82.836 79.540 85.960 730.835 210.132 85.960
SC_hard 493.936 1122.909 ! 1415.595 6466.733 380.188 2815.709 1072.820 583.556
MIPlib 55897.295 55896.809 55897.295 59879.697 55897.087 1.793e+07 2.544e+07 2.544e+07 109244.838
Coral 22753.221 5.091e+08 34365.272 2.805e+09 8.404e+08 2.028e+10 2.028e+10 2.028e+10 2.028e+10
Cut 27475.333 42903.333 19837.000 30891.364 30993.000 27696.667 32142.333 18821.667 31275.667
ECOGCNN 1.512e+06 1.512e+06 1.512e+06 1.516e+06 1.514e+06 1.514e+06 1.531e+06 1.517e+06 1.531e+06
HEM_knapsack 22.600 22.600 22.600 22.600 22.600 20.400 26.800 20.000 26.800
HEM_mis 6.800 6.800 6.800 7.600 6.800 11.000 12.200 6.600 8.600
HEM_setcover 47.400 47.400 47.400 46.000 47.400 47.400 199.400 181.400 48.200
HEM_corlat 269.000 269.000 269.000 271.200 269.000 270.200 275.000 270.200 271.400
HEM_mik 29114.400 29114.400 29114.400 28879.200 28115.600 26032.200 26032.200 29114.400 26032.200
item_placement 2.507 3.998 4.326 5.991 6.442 60.436 60.436 57.629 60.436
load_balancing 41.200 42.000 41.200 40.200 41.700 128.500 128.500 128.500 128.500
anonymous 258504.164 1.947e+06 270867.857 1.108e+06 677494.474 503517.810 1.969e+06 1.968e+06 1.560e+06
Nexp 4.181e+08 4.191e+08 4.181e+08 4.218e+08 4.181e+08 4.206e+08 6.950e+08 5.415e+08 4.276e+08
Transportation 22325.400 26139.800 30560.400 49015.800 29393.800 21579.600 161605.000 161605.000 22019.200
vary_bounds_s1 1130.200 1256.800 1130.200 2502.600 1130.200 2372.800 5027.200 2174.400 3314.400
vary_bounds_s2 0.000 0.000 0.000 14.600 0.000 0.000 0.000 4.800 0.000
vary_bounds_s3 0.000 0.000 0.000 0.800 1.045e-06 0.000 0.000 7.200 0.000
vary_matrix_s1 1.545 0.762 1.545 1.497 1.540 3.505 3.505 3.077 3.505
vary_matrix_rhs_bounds_s1 2.115e+08 2.115e+08 2.115e+08 1.177e+09 7.986e+09 4.578e+09 4.578e+09 4.578e+09 4.578e+09
vary_matrix_rhs_bounds_obj_s1 34559.345 28532.650 34558.737 20423.643 32648.555 5830.361 5830.361 5830.361 5830.361
vary_obj_s1 184.600 181.000 184.600 190.000 184.600 182.600 130.400 129.200 182.200
vary_obj_s2 2120.358 2118.823 2120.358 3292.140 2120.353 3543.945 3543.945 3543.945 3543.945
vary_obj_s3 598.545 650.142 10.216 6178.054 6588.985 5325.024 6049.489 6199.815 6033.224
vary_rhs_s1 10.216 28.304 10.216 12.824 34.008 63.424 19916.064 111.184 37.512
vary_rhs_s2 3.380 1.149 3.746 74.509 13.005 0.275 0.272 0.272 0.272
vary_rhs_s3 21894.200 21889.400 21893.400 21891.400 21893.400 21894.400 22136.000 18780.800 21892.800
vary_rhs_s4 3.964 3.979 4.648 278.784 26.118 1.163 1.163 1.163 1.163
vary_rhs_obj_s1 63272.867 63899.797 63281.191 60468.907 63478.284 60897.253 60897.253 60897.253 60897.253
vary_rhs_obj_s2 694335.306 694415.705 694350.350 352827.451 537044.786 307580.252 307580.252 307580.252 307580.252
Aclib 178411.999 178412.000 178412.000 178388.200 180249.601 178052.100 250024.200 291294.400 178222.400
fc.data 384.400 384.400 384.400 307.600 384.400 640.000 1512.000 1390.400 820.000
nn_verification 24.581 24.720 24.581 24.558 24.558 24.553 24.553 24.553 8.678

problems, ultimately expanding the scope of their practical applica-
tions.

C.6 Stability Analysis of Algorithms

To further evaluate the reliability and robustness of different algo-
rithms, we conducted a stability analysis focusing on the variability
of their performance. This analysis is based on eight tables sum-
marizing the standard deviation (std) and error bar width for the
objective function values and gap estimates across classical solvers,
heuristic methods, and ML-based approaches.

The standard deviation (std) is calculated using the unbiased
estimator:

std = /| =/,
n-—1
where x; represents individual results, X is the mean, and n is the
sample size. A smaller standard deviation indicates less variability
and greater consistency across problem instances.
The error bar width is defined as the maximum absolute deviation
from the mean:

width = max(|x; — X|).

This metric captures the worst-case deviation, providing addi-
tional insights into the stability of each algorithm.

The tables are divided into two main categories: (1) classical
solvers and heuristic methods, and (2) ML-based approaches. Each
category includes four tables, measuring the variability of objective
function values and gap estimates both in terms of standard devia-
tion and error bar width. These metrics allow us to systematically
compare the stability of different algorithm types and highlight
their strengths and weaknesses.

In the following sections, we analyze the results for classical
solvers and heuristic methods (§C.6.1), ML-based approaches (§C.6.2),
and summarize the overall findings (§C.6.3).

C.6.1 Stability Analysis of Classical Solvers and Heuristic Methods.
This section examines the stability of classical solvers (Gurobi, SCIP,
and CPLEX) and heuristic methods (GLNS, ACP, LIH, MIH, LNS,
and RINS) based on the standard deviation and error bar width of
their objective function values and gap estimates. The results are
summarized in Tables 13, 14, 15, and 16.

The standard deviation (std) results reveal notable differences
in the stability of classical solvers and heuristic methods across
problem instances. Among classical solvers, Gurobi consistently
achieves the lowest variability for both objective function values



MILPBench: A Large-scale Benchmark Test Suite for
Mixed Integer Linear Programming Problems

GECCO ’25, July 14-18, 2025, Malaga, Spain

Table 16: The error bar’s width of gap estimation of solver and heuristic baselines. The bold numbers indicate the best results
achieved by the solvers. + represents the problem of scale being too large to accept the time to collect training samples. !
represents the problem of errors during band training. -represents MILP problems that cannot be solved by the IP framework,

GNN&GBDT.
Problem Gurobi SCIP CPLEX GLNS ACP LIH MIH LNS RINS
MIS_easy 0.002 0.010 0.003 0.002 0.002 0.019 0.019 0.014 0.016
MIS_medium 0.001 0.009 0.008 0.002 0.003 0.005 0.006 0.003 0.003
MIS_hard 0.001 1.019 0.919 0.001 0.010 0.134 0.177 0.003 0.005
MVC_easy 0.002 0.004 0.004 0.001 0.003 0.002 0.003 0.002 0.003
MVC_medium 0.001 0.007 0.028 0.001 0.001 0.001 0.002 0.003 0.005
MVC_hard 0.001 1.708 0.605 0.001 0.005 0.014 0.059 0.002 0.001
SC_easy 0.086 0.000 0.002 0.004 0.001 0.306 0.134 0.007 0.031
SC_medium 0.000 8.000e+19 2.094e-05 0.001 0.001 0.000 0.000 0.000 0.000
SC_hard 8.468e-05 218472.237 ! 0.000 0.001 5.861e-05 0.014 0.000 0.000
MIPlib 7.412e-05 0.059 5.010e-05 0.222 0.001 0.678 0.685 0.684 0.256
Coral 170818.450 7.143e+19 3.429e+10 182803.100 182803.280 214283.595 211475.385 211475.402 211475.385
Cut 0.248 0.836 0.148 0.197 0.283 0.111 0.125 0.105 0.126
ECOGCNN 0.499 9.189 0.580 0.533 0.498 0.541 0.554 0.553 0.544
HEM_knapsack 0.000 0.000 0.000 0.000 0.000 0.016 0.017 0.022 0.017
HEM_mis 0.000 0.000 0.000 0.005 0.000 0.103 0.154 0.008 0.009
HEM_setcover 0.000 0.000 0.000 0.014 0.000 0.000 0.015 0.018 0.003
HEM_corlat 0.000 0.000 0.000 0.051 0.000 0.027 0.136 0.027 0.056
HEM_mik 1.233e-14 0.000 3.866e-06 0.014 0.018 0.047 0.047 1.233e-14 0.047
item_placement 0.347 1.889e+08 0.200 0.148 0.173 0.003 0.003 0.003 0.003
load_balancing 0.000 0.015 0.001 0.008 0.001 0.159 0.159 0.159 0.159
anonymous 0.154 6.054 0.226 0.023 0.334 0.088 0.010 0.010 0.098
Nexp 0.279 0.495 0.285 0.260 0.262 0.246 0.412 0.192 0.251
Transportation 0.001 0.006 0.015 0.027 0.019 0.006 0.020 0.020 0.006
vary_bounds_s1 6.916e-05 0.022 5.663e-05 0.105 6.916e-05 0.106 0.090 0.038 0.088
vary_bounds_s2 0.000 0.004 0.000 0.031 0.000 0.000 0.000 0.013 0.000
vary_bounds_s3 0.000 0.003 0.000 0.002 2.977e-09 0.000 0.000 0.019 0.000
vary_matrix_s1 0.000 0.111 5.765e-05 0.003 0.001 0.027 0.027 0.022 0.027
vary_matrix_rhs_bounds_s1 5.929e-05 1.020e-05 6.906e-05 0.172 0.302 0.011 0.011 0.011 0.011
vary_matrix_rhs_bounds_obj_s1 5.711e-05 0.400 4.277¢-06 1.693 0.113 4.569 4.569 4.569 4.569
vary_obj_s1 0.000 0.001 0.000 0.001 0.000 0.001 0.020 0.007 0.001
vary_obj_s2 7.860e-07 12.556 0.020 0.203 1.407e-06 0.180 0.180 0.180 0.180
vary_obj_s3 0.000 6.000e+19 0.000 5.245 31.517 5.277 5.121 4.975 5.288
vary_rhs_s1 0.001 0.133 0.000 1.157 0.130 0.499 7.351e-05 3.348 0.904
vary_rhs_s2 3.034e-05 0.001 1.363e-05 0.005 0.001 0.000 0.000 0.000 0.000
vary_rhs_s3 3.085e-05 0.000 1.986e-05 4.208e-05 1.125e-05 3.754e-05 0.069 0.112 3.355e-05
vary_rhs_s4 4.838e-05 0.000 1.253e-06 0.017 0.001 0.001 0.001 0.001 0.001
vary_rhs_obj_s1 2.106e-05 0.008 2.410e-05 0.014 0.008 0.016 0.016 0.016 0.016
vary_rhs_obj_s2 2.637e-05 0.000 6.412e-06 0.314 0.118 0.378 0.378 0.378 0.378
Aclib 2.019e-05 0.000 1.150e-05 0.005 0.008 0.019 0.250 0.166 0.009
fc.data 0.000 0.000 0.000 0.399 2.608e-08 0.112 0.094 0.092 0.083
nn_verification 5.108e-05 0.604 7.188e-05 0.394 0.394 0.396 0.396 0.396 1.742

and gap estimates, demonstrating high reliability. CPLEX also per-
forms well in structured problems such as Cut, but its stability de-
creases in more complex scenarios like SC_hard. In contrast, SCIP
exhibits significantly higher variability, particularly in large-scale
and time-constrained problems. For heuristic methods, ACP shows
relatively low variability in large-scale problems such as MIS_hard
and SC_hard, reflecting its adaptability to these scenarios. However,
other heuristics, including GLNS and LNS, display higher variability
across diverse problem types, particularly in constrained instances
like HEM_corlat.

The error bar width results provide additional insights into the
stability of the algorithms by quantifying their worst-case devia-
tions. Gurobi again achieves the smallest error bar widths in most
instances, confirming its robustness and reliability across problem
types. CPLEX follows closely in many cases but demonstrates larger
deviations in highly complex problems, which impacts its consis-
tency. SCIP exhibits the largest error bar widths among classical
solvers, particularly in datasets like SC_hard and Coral, where its
performance fluctuates significantly. For heuristic methods, ACP
and MIH achieve narrower error bars in large-scale problems, in-
dicating more stable performance in these scenarios. In contrast,

methods such as LNS and RINS tend to have wider error bars, par-
ticularly in constrained problems, suggesting greater sensitivity to
problem structure.

In summary, classical solvers, and particularly Gurobi, exhibit
superior stability in both objective function values and gap esti-
mates, making them the most reliable choice for diverse MILP tasks.
Heuristic methods, while computationally efficient, show mixed
stability. ACP and MIH perform consistently in large-scale prob-
lems, but other heuristics struggle to maintain stability in highly
constrained instances. These findings underscore the importance
of balancing computational efficiency with solution stability when
evaluating and selecting algorithms for specific problem types.

C.6.2 Stability Analysis of Machine Learning-Based Methods. This
section evaluates the stability of machine learning-based methods,
including Learn2Branch, GNN&GBDT, Predict&Search, Hybrid-
Learn2Branch, GNN-MLP, and Neural Diving, using the standard
deviation and error bar width of their objective function values and
gap estimates. The results are summarized in Tables 17, 18, 19, and
20.

The standard deviation results (Tables 17 and 18) indicate that
machine learning-based methods exhibit varying levels of stability
across different problem types. Predict&Search and GNN&GBDT
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Table 17: The standard deviations of objective function value of machine learning-based baselines. The bold numbers indicate
the best results achieved by the solvers. + represents the problem of scale being too large to accept the time to collect training
samples. ! represents the problem of errors during band training. -represents MILP problems that cannot be solved by the IP

framework, GNN&GBDT.
Problem Learn2Branch  GNN&GBDT  Predict&Search ~ Hybrid-Learn2Branch ~ GNN-MILP  Nerual Diving
MIS_easy + 17.892 20.611 + 18.025 35.438
MIS_medium + 44.335 35.951 + ! 1.774
MIS_hard + 187.283 ! + ! !
MVC_easy + 19.738 32.386 + 36.464 19.417
MVC_medium + 82.201 ! + ! 94.698
MVC_hard + 388.435 ! + ! !
SC_easy + 18.620 20.861 + 14.912 17.017
SC_medium + 52.195 ! + ! 79.782
SC_hard + 29312.555 ! + ! !
MIPlib 38218.073 - 37266.005 38114.382 ! 356922.764
Coral + - 8.944e+09 + ! 894.124
Cut 37345.502 - 24236.301 38161.619 13878.449 21495.375
ECOGCNN + - 1.309e+06 + ! 1.309e+06
HEM_knapsack 14.293 14.293 14.293 12.542 0.000 0.000
HEM_mis 4.087 7.021 4.087 4.087 7.503 0.000
HEM_setcover 31.966 32.337 31.966 + 26.627 31.966
HEM_corlat + - 151.013 + 151.013 99.582
HEM_mik + - 16320.035 + 12499.839 16320.035
item_placement 2.906 - 1.110 5.236 ! 1.118
load_balancing + - 22.900 + 24.546 22.755
anonymous + - 192552.907 + 2.586e+06 213294.026
Nexp 2.368e+08 - 2.346e+08 + ! 2.346e+08
Transportation 14835.951 - 14807.757 + 17086.662 7.297e+06
vary_bounds_s1 1194.468 - 965.519 1385.008 968.206 968.206
vary_bounds_s2 + - 0.000 + 0.000 0.000
vary_bounds_s3 + - 0.000 + 0.000 0.000
vary_matrix_s1 1.400 - 1.010 0.822 ! 1.010
vary_matrix_rhs_bounds_s1 + - 1.466e+08 1.467e+08 ! 1.466e+08
vary_matrix_rhs_bounds_obj_s1 22019.680 - 24157.854 23948.013 24157.864 24157.854
vary_obj_s1 114.321 113.742 113.742 112.628 113.742 113.742
vary_obj_s2 + - 1253.170 + ! 1253.171
vary_obj_s3 393.906 - 393.906 + ! 393.906
vary_rhs_s1 + - 6.552 + 6.552 59.756
vary_rhs_sZ 1.333 - 1.890 1.958 ! 1.890
vary_rhs_s3 + 12418.570 12448.377 + ! 7302.063
vary_rhs_s4 4.020 - 3.373 3.356 ! 3.356
vary_rhs_obj_s1 + - 45778.114 + ! 45777.962
vary_rhs_obj_s2 394761.511 - 394760.816 394756.053 ! 394759.678
Aclib + - 99060.560 99060.560 587270.422 135835.853
fc.data + - 219.889 219.889 219.889 219.889
nn_verification + - 10.199 + ! 13.378

generally achieve lower standard deviations in both objective func-
tion values and gap estimates for structured problems such as
HEM_knapsack and HEM_corlat, highlighting their consistency in
these scenarios. However, methods like Neural Diving and GNN-
MLP show higher variability, particularly in large-scale or com-
plex problems such as SC_hard and Nexp, where their performance
fluctuates significantly. Learn2Branch and Hybrid-Learn2Branch
achieve intermediate levels of stability, with reduced variability in
specific problem types but less consistency across the entire dataset.

The error bar width results (Tables 19 and 20) provide further
insights into the worst-case deviations. Predict&Search and GNN&
GBDT maintain narrower error bars in structured and small-scale
problems, confirming their robustness in these controlled environ-
ments. Conversely, Neural Diving and GNN-MLP exhibit wider
error bars across several problem types, particularly in large-scale
datasets such as Transportation and SC_hard, indicating signifi-
cant performance fluctuations. Hybrid-Learn2Branch shows mod-
erate error bar widths, suggesting a balance between stability and
adaptability.

Overall, machine learning-based methods demonstrate potential
for stability in structured and small-scale problems, but their perfor-
mance becomes less consistent in large-scale or highly complex sce-
narios. Predict&Search and GNN&GBDT emerge as relatively stable

approaches, while Neural Diving and GNN-MLP exhibit greater
sensitivity to problem complexity. These findings underscore the
need for further refinement of machine learning methods to en-
hance their stability and generalizability across diverse problem

types.

C.6.3 Summary of Stability Analysis. The stability analysis high-
lights the contrasting behaviors of classical solvers, heuristic meth-
ods, and machine learning-based approaches. Classical solvers, par-
ticularly Gurobi, consistently demonstrate superior stability in both
objective function values and gap estimates, with low standard de-
viations and narrow error bar widths across most problem types.
This reliability makes them a strong choice for solving diverse MILP
problems, especially in scenarios requiring consistent performance.

Heuristic methods, while computationally efficient, show mixed
stability. Methods such as ACP and MIH perform well in large-scale
problems, displaying moderate variability and controlled worst-
case deviations. However, other heuristics, including LNS and RINS,
exhibit greater sensitivity to problem structure, leading to higher
variability in constrained or complex instances.

Machine learning-based methods demonstrate promising stabil-
ity in structured and small-scale problems, with Predict&Search
and GNN&GBDT emerging as relatively robust approaches. How-
ever, their performance becomes less consistent in large-scale or
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Table 18: The standard deviations of gap estimation of machine learning-based baselines. The bold numbers indicate the best
results achieved by the solvers. + represents the problem of scale being too large to accept the time to collect training samples. !
represents the problem of errors during band training. -represents MILP problems that cannot be solved by the IP framework,
GNN&GBDT.

Problem Learn2Branch  GNN&GBDT  Predict&Search ~ Hybrid-Learn2Branch ~ GNN-MILP  Nerual Diving
MIS_easy n 0.003 0.002 + 0.007 496.683
MIS_medium + 0.003 0.002 + ! 264.896
MIS_hard + 0.001 ! + ! !
MVC_easy + 0.002 0.005 + 0.003 0.003
MVC_medium + 0.001 ! + ! 0.003
MVC_hard + 0.001 ! + ! !
SC_easy + 0.002 0.005 + 0.001 0.005
SC_medium + 0.000 ! + ! 0.000
SC_hard + 0.001 ! + ! !
MIPlib 0.325 - 2.466¢-06 0.165 ! 0.831
Coral + - 44035.222 + ! 71894.505
Cut 0.749 - 0.217 0.730 0.112 0.544
ECOGCNN + - 0.432 + ! 46749.986
HEM_knapsack 0.000 0.000 0.000 0.010 ! !
HEM_mis 0.000 0.021 0.000 0.000 0.055 !
HEM_setcover 0.000 0.002 0.000 + 0.045 0.000
HEM_corlat + - 0.000 + 0.002 2.065
HEM_mik + - 6.710e-15 + 0.030 6.892¢-15
item_placement 9.738e+07 - 0.173 4.216e+19 ! 0.242
load_balancing + - 9.120e-05 + 0.008 0.027
anonymous + - 0.144 + 1.724 0.406
Nexp 0.275 - 0.150 + ! 3.793e+06
Transportation 0.009 - 0.006 + 0.003 0.355
vary_bounds_s1 0.040 - 0.001 0.063 3.866e-05 3.866e-05
vary_bounds_s2 + - 0.000 + 0.000 0.000
vary_bounds_s3 + - 0.000 + 0.000 0.000
vary_matrix_s1 0.033 - 1.516e-16 0.105 ! 4.791e-16
vary_matrix_rhs_bounds_s1 + - 3.861e-05 0.025 ! 0.053
vary_matrix_rhs_bounds_obj_s1 0.122 - 5.007e-05 4.472e+19 6.168e-05 5.038e-05
vary_obj_s1 0.001 0.000 0.000 0.001 0.000 0.001
vary_obj_s2 + - 2.931e-06 + ! 1.397
vary_obj_s3 0.150 - 0.000 + ! 0.145
vary_rhs_s1 + - 0.001 + 0.001 0.306
vary_rhs_sZ 0.000 - 1.937e-05 0.000 ! 1.723e-05
vary_rhs_s3 + 0.001 9.635e-06 + ! 0.167
vary_rhs_s4 0.000 - 3.457e-05 0.000 ! 7.709e-05
vary_rhs_obj_s1 + - 1.368e-05 + ! 1.338e-05
vary_rhs_obj_s2 0.001 - 1.959¢-05 0.001 ! 1.778e-05
Aclib + - 7.091e-06 0.005 0.042 2.358
fc.data + - 0.000 0.027 0.000 0.000
nn_verification + - 4.022e-05 + ! 1.307
highly complex scenarios, as evidenced by higher standard devi- The results underscore the utility of MILPBench as a benchmark-
ations and wider error bars for methods like Neural Diving and ing tool for systematically evaluating algorithm stability across di-
GNN-MLP. These findings suggest that while machine learning verse problem types. By providing detailed insights into the variabil-
methods have potential, further refinement is needed to improve ity and robustness of different approaches, MILPBench facilitates
their generalizability and stability across diverse problem types. the development and selection of reliable optimization algorithms,

bridging the gap between theoretical advancements and practical
applications.
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Table 19: The error bar’s width of objective function value of machine learning-based baselines. The bold numbers indicate the
best results achieved by the solvers. + represents the problem of scale being too large to accept the time to collect training
samples. ! represents the problem of errors during band training. -represents MILP problems that cannot be solved by the IP

framework, GNN&GBDT.
Problem Learn2Branch  GNN&GBDT  Predict&Search ~ Hybrid-Learn2Branch ~ GNN-MILP  Nerual Diving
MIS_easy + 21.417 30.653 + 22.860 62.831
MIS_medium + 57.973 50.546 + ! 2.310
MIS_hard + 273.179 ! + ! !
MVC_easy + 27.301 54.594 + 61.105 27.038
MVC_medium + 116.601 ! + ! 136.500
MVC_hard + 647.370 ! + ! !
SC_easy + 30.751 33.531 + 21.677 25.014
SC_medium + 66.290 ! + ! 116.732
SC_hard + 38999.409 ! + ! !
MIPlib 57325.427 - 55897.309 57169.901 ! 535180.504
Coral + - 2.028e+10 + ! 2027.121
Cut 43110.333 - 27969.333 44054.667 14661.667 24804.667
ECOGCNN + - 1.512e+06 + ! 1.512e+06
HEM_knapsack 22.600 22.600 22.600 20.600 0.000 0.000
HEM_mis 6.800 10.600 6.800 6.800 10.400 0.000
HEM_setcover 47.400 48.200 47.400 + 37.000 47.400
HEM_corlat + - 269.000 + 269.000 177.000
HEM_mik + - 29114.400 + 22194.200 29114.400
item_placement 5.231 - 2.706 8.029 ! 2.156
load_balancing + - 41.200 + 47.500 40.700
anonymous + - 277335.944 + 3.096e+06 293808.183
Nexp 4.219e+08 - 4.181e+08 + ! 4.181e+08
Transportation 21496.400 - 25053.600 + 27216.800 1.305e+07
vary_bounds_s1 1333.600 - 1127.200 1513.600 1130.200 1130.200
vary_bounds_s2 + - 0.000 + 0.000 0.000
vary_bounds_s3 + - 0.000 + 0.000 0.000
vary_matrix_s1 1.673 - 1.545 0.988 ! 1.545
vary_matrix_rhs_bounds_s1 + - 2.115e+08 2.117e+08 ! 2.115e+08
vary_matrix_rhs_bounds_obj_s1 30762.455 - 34559.345 27802.006 34558.953 34559.333
vary_obj_s1 186.400 184.600 184.600 181.000 184.600 184.600
vary_obj_s2 + - 2120.358 + ! 2120.358
vary_obj_s3 598.545 - 598.545 + ! 598.545
vary_rhs_s1 + - 10.216 + 10.216 103.609
vary_rhs_sZ 2.217 - 3.380 3.486 ! 3.380
vary_rhs_s3 + 21841.200 21893.800 + ! 12988.600
vary_rhs_s4 5.106 - 3.775 3.979 ! 3.979
vary_rhs_obj_s1 + - 63273.600 + ! 63275.325
vary_rhs_obj_s2 694353.046 - 694355.144 694346.141 ! 694353.030
Aclib + - 178412.000 178412.000 966103.130 315081.812
fc.data + - 384.400 384.400 384.400 384.400
nn_verification + - 24.581 + ! 25.708
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Table 20: The error bar’s width of gap estimation of machine learning-based baselines. The bold numbers indicate the best
results achieved by the solvers. + represents the problem of scale being too large to accept the time to collect training samples. !
represents the problem of errors during band training. -represents MILP problems that cannot be solved by the IP framework,
GNN&GBDT.

Problem Learn2Branch  GNN&GBDT  Predict&Search ~ Hybrid-Learn2Branch ~ GNN-MILP  Nerual Diving
MIS_easy + 0.005 0.003 + 0.009 748.749
MIS_medium + 0.004 0.003 + ! 367.429
MIS_hard + 0.002 ! + ! !
MVC_easy + 0.003 0.007 + 0.005 0.004
MVC_medium + 0.001 ! + ! 0.004
MVC_hard + 0.002 ! + ! !
SC_easy + 0.002 0.009 + 0.001 0.009
SC_medium + 0.000 ! + ! 0.000
SC_hard + 0.002 ! + ! !
MIPlib 0.328 - 3.699e-06 0.186 ! 1.246
Coral + - 99862.498 + ! 163041.413
Cut 0.865 - 0.249 0.842 0.114 0.582
ECOGCNN + - 0.499 + ! 53982.234
HEM_knapsack 0.000 0.000 0.000 0.019 ! !
HEM_mis 0.000 0.030 0.000 0.000 0.070 !
HEM_setcover 0.000 0.003 0.000 + 0.056 0.000
HEM_corlat + - 0.000 + 0.003 3.665
HEM_mik + - 1.200e-14 + 0.054 1.233e-14
item_placement 2.660e+08 - 0.339 8.000e+19 ! 0.536
load_balancing + - 0.000 + 0.020 0.060
anonymous + - 0.187 + 2.586 0.591
Nexp 0.490 - 0.268 + ! 6.785e+06
Transportation 0.013 - 0.008 + 0.004 0.634
vary_bounds_s1 0.054 - 0.001 0.072 6.916e-05 6.916e-05
vary_bounds_s2 + - 0.000 + 0.000 0.000
vary_bounds_s3 + - 0.000 + 0.000 0.000
vary_matrix_s1 0.044 - 2.096e-16 0.174 ! 5.573e-16
vary_matrix_rhs_bounds_s1 + - 6.426e-05 0.045 ! 0.082
vary_matrix_rhs_bounds_obj_s1 0.203 - 5.711e-05 8.000e+19 8.306e-05 5.687e-05
vary_obj_s1 0.001 0.000 0.000 0.001 0.000 0.001
vary_obj_s2 + - 5.185e-06 + ! 2.079
vary_obj_s3 0.269 - 0.000 + ! 0.190
vary_rhs_s1 + - 0.001 + 0.001 0.539
vary_rhs_sZ 0.000 - 3.034e-05 0.000 ! 2.487e-05
vary_rhs_s3 + 0.002 1.338e-05 + ! 0.296
vary_rhs_s4 0.000 - 3.682e-05 0.000 ! 9.921e-05
vary_rhs_obj_s1 + - 1.999¢-05 + ! 2.344e-05
vary_rhs_obj_s2 0.001 - 3.022e-05 0.001 ! 2.777e-05
Aclib + - 2.018e-05 0.008 0.071 6.661
fc.data + - 0.000 0.049 0.000 0.000
nn_verification + - 7.086e-05 + ! 3.310
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