
Large Language Model Driven
Evolutionary Optimization

Hua Xu1, Xiaodong Li2, Yuan Yuan3, Yuan Sun4, Huigen Ye1

1Department of Computer Science&Technology, Tsinghua University
2School of Computing Technologies, RMIT University

3School of Computer Science and Engineering, Beihang University
4Research Center for Data Analytics and Cognition, La Trobe University

Tutorial at CEC2025, Hangzhou, China, June, 2025

Instructors

• Hua Xu is a tenured Associate Professor in the Department of Computer
Science at Tsinghua University. His research explores intelligent optimization
and human-machine interaction in AI. He has published extensively in top
venues, authored influential monographs such as Intelligent Evolutionary
Optimization (Elsevier, 2024), and holds numerous patents. His work has
received major honors including the National Science and Technology
Progress Award and the Beijing Science and Technology Award, and he
currently serves as Editor-in-Chief of Intelligent Systems with Applications.

• Xiaodong Li is a Professor in the School of Computing Technologies at RMIT
University, Melbourne. His research spans machine learning, evolutionary
computation, swarm intelligence, and multiobjective optimization. He has
served as Associate Editor for leading journals such as IEEE Transactions on
Evolutionary Computation and Swarm Intelligence. A recipient of the ACM
SIGEVO Impact Award and an IEEE Fellow, he has contributed extensively to
the field through both research and leadership in IEEE CIS Task Forces.

2

Instructors

• Yuan Yuan is currently a Professor with the School of Computer Science and
Engineering, Beihang University, China. His research interests include
evolutionary computation, machine learning, multiobjective optimization and
search-based software engineering. He has served as Associate Editor for
leading journals such as lEEE Transactions on Evolutionary Computation and
IEEE Transactions on Emerging Topics in Computational Intelligence.

• Yuan Sun is a Lecturer in Business Analytics and Artificial Intelligence at La
Trobe University, Australia. He received his BSc in Applied Mathematics from
Peking University, China, and his PhD in Computer Science from The University
of Melbourne, Australia. His research interests include artificial intelligence,
machine learning, operations research, and evolutionary computation. His
research has contributed significantly to the emerging area of leveraging
machine learning for combinatorial optimisation. He is the vice-chair of the
IEEE task force on large-scale global optimisation and has organised special
sessions and workshops, and delivered tutorials at the GECCO, PPSN, and CEC
conferences.

3

Instructors

• Huigen Ye is a Ph.D. student at Tsinghua University, focusing on applying
machine learning to accelerate large-scale optimization, particularly in mixed-
integer programming. He has published papers in top conferences such as
ICML, ICLR and AAAI. He is actively involved in academic service, serving as a
reviewer for conferences like AISTATS, NeurIPS and ICLR.

4

Overview: Intelligent Evolutionary Optimization
- Guided by Deep Learning and Large Language Models

Hua Xu, Tsinghua University, Beijing, P. R. China

Contents

• Background

• Machine Learning Guided Evolutionary Optimization

• LLM Guided Evolutionary Optimization

• The Tutorial Organization

6

Background
• Several Optimization Cases

• 3D IC Partitioning Problem(Meitei et al., 2020)

• Pickup and Delivery Problem with Time Windows(Dumas et al., 1991)

• Supply Chain Management Problem(Villa, 2001)

• Problem Definition
• Definition:

7
(a) IC Partitioning Problem (b) Pickup and Delivery Problem (c) Supply Chain Management

Background
• Traditional Mathematical and Exact Methods

• Exact Methods:
• Solver: SCIP(Achterberg, 2009), IPOPT(Biegler et al. 2009),

Gurobi(Pedroso 2011), CPLEX(Bliek1ú et al., 2014)

• Academic Progress: Advanced Branch-and-Bound
Techniques(Morrison et al., 2016)，Cutting Plane Methods(Dey

et al., 2018)

• Heuristics Method
• Large Neighborhood Search(LNS)(Song et al., 2020)

• Adaptive Constraint Partition(Ye et al., 2023)

• Evolution Optimization Method(Liu et al., 2023)

• Challenges

• Exact Methods: Scalability Issues & Exponential Complexity

• Heuristics Method: Careful Parameter Tuning & Cold Start
Issues

(b) Evolution Optimization Method

(a) Branch-and-Bound Techniques

Machine Learning Guided Evolutionary Optimization

• Evolutionary processes assisted by machine learning(Liu et al., 2023)

• Evolutionary Generator

• Evolutionary Evaluator

• Learnable Evolutionary Discriminator

• More details in Topic I

9

(a) Evolutionary Generator (b) Evolutionary Evaluator

(c) Learnable Evolutionary DiscriminatorMachine Learning

Machine Learning Guided Evolutionary Optimization

• Challenge

• Lack of diverse, large-scale training data for evolutionary learning

• Current benchmarks are too small, simple, and fail to reflect real-world
complexity

• Traditional deep learning models are task-specific and require heavy
retraining for each new optimization problem

• What we need to do?

• Automated Data Generator(Yang et al., 2024)

• Comprehensive Benchmark Test Suite(Ye et al., 2025a)

• Large Language Models (LLMs) to generalize and automate

10

LLM Guided Evolutionary Optimization
• Evolutionary processes assisted by LLM

• Key Direction
• LLM-assisted End-to-end Optimization

• Automate both problem formulation and solving.

• LLM-assisted Optimization Algorithm Generation
• Generate heuristic operators for better search.

• LLM-assisted Test Case Generation
• Combine code synthesis with evolutionary search.

11

LLM Guided Evolutionary Optimization
• LLM-assisted End-to-end Optimization

• LLMs show strong potential for black-box optimization.

• OPRO(Yang et al., 2023): Iterative solution generation via optimization trajectories.

• LMEA(Liu et al., 2024a): LLMs perform crossover and mutation in EA.

• LEO(Brahmachary et al., 2025): Exploration and exploitation balanced through elitism.

• More details in Topic II

12
(a) OPRO Framework

LLM Guided Evolutionary Optimization
• LLM-assisted Optimization Algorithm Generation

• LLMs generate optimization algorithms beyond acting as operators.

• Single-Round Generation:

• HybridMeta(Pluhacek et al., 2023): LLMs design hybrid metaheuristics by combining
known methods.

• Optimus(AhmadiTeshnizi et al., 2023): LLMs automate MILP modeling, solving, and
debugging.

• Iterative Evolution:

• Funsearch(Romera-Paredes et al., 2024): LLMs paired with evaluators to evolve interpretable
programs solving combinatorial and algorithmic problems.

• EOH(Liu et al., 2024b): LLMs co-evolve heuristic ideas and code structures.

• Reevo(Ye et al., 2024): Reflective evolution enhances algorithm optimization via short-
and long-term feedback.

• More details in Topic III

13

LLM Guided Evolutionary Optimization
• LLM-assisted Test Case Generation

• LLMs enhance test generation by combining code synthesis with evolutionary
search.

• TitanFuzz(Deng et al., 2023)

• Uses Codex (for seeds) and InCoder (for mutations).

• Fitness: dataflow depth, API diversity, repeated API penalties.

• CodaMOSA(Lemieux et al., 2023)

• EA halts at coverage plateau.

• LLM generates tests for low-coverage functions.

• EA resumes with improved seeds.

• More details in Topic IV

14

The Tutorial Organization
• Topic I: Evolutionary Optimization Based on Machine Learning

Prof. Xiaodong Li, IEEE Fellow, RMIT University

• Topic II: Business Optimization and Problem Formulation
Using Large Language Models

Prof. Yuan Sun, La Trobe University

• Topic III: Evolutionary Optimization Guided by Large Models

Huigeng Ye, Tsinghua University

• Topic IV: Test Case Generation Using Large Language Models

Prof. Yuan Yuan, Beihang University

15

References
• (Meitei et al., 2020) Meitei N Y, Baishnab K L, Trivedi G. 3D‐IC partitioning method based on genetic algorithm[J]. IET Circuits, Devices & Systems, 2020, 14(7): 1104-1109.
• (Dumas et al., 1991) Dumas Y, Desrosiers J, Soumis F. The pickup and delivery problem with time windows[J]. European journal of operational research, 1991, 54(1): 7-22.
• (Villa, 2001) Villa A. Introducing some supply chain management problems[J]. International Journal of Production Economics, 2001, 73(1): 1-4.
• (Achterberg, 2009) Achterberg T. SCIP: solving constraint integer programs[J]. Mathematical Programming Computation, 2009, 1: 1-41.
• (Biegler et al., 2009) Biegler L T, Zavala V M. Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization[J].

Computers & Chemical Engineering, 2009, 33(3): 575-582.
• (Pedroso, 2011) Pedroso J P. Optimization with gurobi and python[J]. INESC Porto and Universidade do Porto, Porto, Portugal, 2011, 1.
• (Bliek1ú et al., 2014) Bliek1ú C, Bonami P, Lodi A. Solving mixed-integer quadratic programming problems with IBM-CPLEX: a progress report[C]. Proceedings of the

twenty-sixth RAMP symposium. 2014: 16-17.
• (Morrison et al., 2016) Morrison D R, Jacobson S H, Sauppe J J, et al. Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning[J].

Discrete Optimization, 2016, 19: 79-102.
• (Dey et al., 2018) Dey S S, Molinaro M. Theoretical challenges towards cutting-plane selection[J]. Mathematical Programming, 2018, 170: 237-266.
• (Song et al., 2020) Song J, Yue Y, Dilkina B. A general large neighborhood search framework for solving integer linear programs[J]. Advances in Neural Information

Processing Systems, 2020, 33: 20012-20023.
• (Ye et al., 2023) Ye H, Wang H, Xu H, et al. Adaptive constraint partition based optimization framework for large-scale integer linear programming (student abstract)[C].

Proceedings of the AAAI Conference on Artificial Intelligence. 2023, 37(13): 16376-16377.
• (Liu et al., 2023) Liu S, Lin Q, Li J, et al. A survey on learnable evolutionary algorithms for scalable multiobjective optimization[J]. IEEE Transactions on Evolutionary

Computation, 2023, 27(6): 1941-1961.
• (Yang et al., 2024) Yang T, Ye H, Xu H. Learning to generate scalable milp instances[C].Proceedings of the Genetic and Evolutionary Computation Conference Companion.

2024: 159-162.
• (Ye et al., 2025a) Ye H, Cheng Y, Xu H, et al. MILPBench: A Large-scale Benchmark Test Suite for Mixed Integer Linear Programming Problems[C]. Proceedings of the

Genetic and Evolutionary Computation Conference Companion. 2025.
• (Yang et al., 2023) Yang C, Wang X, Lu Y, et al. Large Language Models as Optimizers[C]. The Twelfth International Conference on Learning Representations.
• (Liu et al., 2024a) Liu S, Chen C, Qu X, et al. Large language models as evolutionary optimizers[C]. 2024 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2024:

1-8.
• (Brahmachary et al., 2025) Brahmachary S, Joshi S M, Panda A, et al. Large language model-based evolutionary optimizer: Reasoning with elitism[J]. Neurocomputing,

2025, 622: 129272.
• (Pluhacek et al., 2023) Pluhacek M, Kazikova A, Kadavy T, et al. Leveraging large language models for the generation of novel metaheuristic optimization

algorithms[C].Proceedings of the Companion Conference on Genetic and Evolutionary Computation. 2023: 1812-1820.
• (AhmadiTeshnizi et al., 2023) AhmadiTeshnizi A, Gao W, Udell M. Optimus: Optimization modeling using mip solvers and large language models[J]. arXiv preprint

arXiv:2310.06116, 2023.
• (Romera-Paredes et al., 2024) Romera-Paredes B, Barekatain M, Novikov A, et al. Mathematical discoveries from program search with large language models[J]. Nature,

2024, 625(7995): 468-475.
• (Liu et al., 2024b) Liu F, Xialiang T, Yuan M, et al. Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using Large Language Model[C]. Forty-first

International Conference on Machine Learning.
• (Ye et al., 2024) Ye H, Wang J, Cao Z, et al. ReEvo: Large Language Models as Hyper-Heuristics with Reflective Evolution[C]. The Thirty-eighth Annual Conference on

Neural Information Processing Systems.
• (Deng et al., 2023) Deng Y, Xia C S, Peng H, et al. Large language models are zero-shot fuzzers: Fuzzing deep-learning libraries via large language models[C].

Proceedings of the 32nd ACM SIGSOFT international symposium on software testing and analysis. 2023: 423-435.
• (Lemieux et al., 2023) Lemieux C, Inala J P, Lahiri S K, et al. Codamosa: Escaping coverage plateaus in test generation with pre-trained large language models[C]. 2023

IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 2023: 919-931. 16

Evolutionary Optimization Enhanced by
Machine Learning
Xiaodong Li, RMIT University, Melbourne, Victoria, Australia
Yuan Sun (Presenter), La Trobe University, Melbourne, Australia

Why machine learning can help?

• Traditional optimization often relies on handcrafted rules for decision-making.

• Minor variations in problems frequently require redeveloping algorithms.

• In many industries, similar instances are solved repeatedly, often from scratch.

• There is an abundance of data, e.g., historical operations data collected over time.

• Collecting optimal solutions for training is feasible due to advanced solvers.

• Machine learning and deep learning are mature, powerful, and widely accessible.

• 1

18

Solution Prediction via Machine Learning: Training

• Solve a set of easy problem instances to optimality.

• Label decision variables using their optimal solution values.

• Extract features to characterize each decision variable.

• Train a machine learning model to predict optimal values for decision
variables.

19

Features
• A list of features that may be useful:

• Graph-based features: e.g., node weight, node degree, edge distance

• Mathematical features: e.g., objective bound (sum of weights of a node and
its neighbors for maximum weighted clique problems)

• MIP formulation features: e.g., cost coefficients, number of non-zeros in the
constraint matrix etc.

• LP relaxation features: e.g., reduced costs, optimal LP solution values

• Heuristic-based features: e.g., value-to-weight ratio in knapsack problems

• Statistical features from sample solutions: e.g., correlation between variable
values and objective value, frequency of variable values in high-quality
solutions (similar to Estimation of Distribution Algorithms or Ant Colony
Optimization).

20

Machine learning models

21

Using Pre-defined Features

• Logistic Regression

• Support Vector Machines

• Deep Neural Networks

Automatically Learning Features

• Graph Neural Networks (GNNs): Leverage
graph structure to learn node/edge-level
representations

• Autoencoders: Learn compact, informative
feature representations from raw inputs

• Transformers: Capture long-range
dependencies, useful for sequences or sets

Solution Prediction via Machine Learning: Testing

22

➢Given a test problem instance, the trained machine learning model predicts
the likelihood that each binary decision variable is part of the optimal
solution (i.e., has a value of 1).

•Note: Any bounded integer variable can be represented as a set of binary variables, making
this approach broadly applicable.

Constructing Solutions from ML Predictions

23

• Use predicted probabilities to greedily construct solutions, selecting at each
step the variable most likely to be in the optimal solution.

• Expected to outperform hand-crafted heuristics, since such rules can
be incorporated as features into the learning model.

• Can be combined with tree-based search methods (e.g., DFS) to prioritize
high-quality regions of the solution space. (NeurIPS’18, IJCNN’21)(Li et al., 2018,

Shen et al., 2021)

Pruning the Search Space with ML Predictions

24

➢ Fix or remove decision variables that are unlikely to be part of the optimal
solution. Specifically, variables with predicted probabilities below a
threshold can be fixed to 0. (TPMAI’19, AAAI’19)(Sun et al., 2019, Lauri et al., 2019)

➢Apply a search algorithm to find a solution in the resulting reduced problem
space, enabling faster and more focused optimization.

Extensions of ML-Guided Pruning

25

•Constraint-Based Pruning (AAAI 2020)(Ding et al., 2020)

• Train a GNN to predict binary variable values in MIPs. Prune the search space via a global inequality
constraint that limits deviation from the predicted solution.

•Generalization to Unseen Instances (OR Spectrum 2021)(Sun et al., 2021)

• Train ML models on one category of instances and test across a variety of instances with different
characteristics.

•Multi-Stage Pruning (Journal of Heuristics, 2023)(Lauri et al., 2023)

• Apply the trained ML model recursively to prune the search space. Each stage trains a new classifier to
progressively eliminate harder-to-prune elements.

•ML-Guided Column Generation (ICLR 2023)(Sun et al., 2022a)

• Extend to problem formulations with exponentially many variables. Use the model to filter and select
high-quality variables.

•Reduce-Then-Optimize (Transportation Science, 2025)(Spieckermann et al., 2025)

• Use a GNN to identify a relevant subset of variables in the Fixed-Charge Transportation Problem (FCTP),
reducing problem size and boosting solver efficiency.

Sampling Solutions Based on ML Predictions

26

At each step, the probability of selecting
variable 𝑣𝑖 is:

𝑝𝑖 =
𝑦𝑖

σ𝑗∈𝑆 𝑦𝑗

where:

• 𝑦𝑖 is the ML prediction (likelihood of inclusion) for 𝑣𝑖

• 𝑆 is the set of feasible candidate variables that can be added to the solution.

Sampling solutions for the pricing problem in Column Generation (AAAI’22) (Shen et al.,

2022)

• A diverse set of high-quality solutions is required — not just one optimal solution.

• Compared to traditional sampling, this approach yields better-quality columns;

• Compared to exact or heuristic methods, it generates more high-quality solutions.

Heuristic rule
ML Prediction

Objective value of samples (larger → better)

Boosting ACO with ML Predictions

27

Ant Colony Optimization (ACO) is a probabilistic
algorithm that samples solutions using:

𝑝𝑖 =
𝜏𝑖𝜂𝑖

σ𝑗∈𝑆 𝜏𝑗𝜂𝑗

• 𝜼: is heuristic rule,

• 𝝉: pheromone trial reflecting the “evolved” quality of solution
components.

Typically, 𝝉 is initialized uniformly and 𝜼 is set based on
domain-specific heuristic rules.

ML-Enhanced Variants of ACO (COR 2022)(Sun et al., 2022a)

• SVM-ACO𝜂: Set 𝜂𝑖 = 𝑦𝑖 , where 𝑦𝑖 is the ML predicted probability;

• SVM-ACOτ: Initialize 𝜏𝑖 = 𝑦𝑖 using ML predictions;

• SVM-ACOෝη: Set the 𝜼 value as a combination of ML predictions
and a heuristic rule

Extensions of ML-Enhanced ACO

28

DeepACO (NeurIPS’23)(Ye et al., 2023)

• Use deep reinforcement learning to learn heuristic measures and is evaluated on eight combinatorial
optimization problems.

LN-ACO (GECCO’23)(Liu et al., 2023)

• Use an “intelligent ant” with a pre-trained GNN to predict variable selection probabilities, forming a
hybrid colony with traditional ants to guide the search process.

DLQ-ACO (GECCO’23)(Ramírez et al., 2023)

• Use GNN to generate variable selection probabilities and Q-learning to decide during solution
construction whether to use ML-derived probabilities or traditional ACO heuristics.

ML-ACO for Column Generation (GECCO’24)(Xu et al., 2024)

• Incorporate ML predictions into the heuristic measures of ACO to efficiently generate multiple diverse,
high-quality solutions for Column Generation.

GFACS (AISTATS’25)(Kim et al., 2025)

• Uses Generative Flow Networks to learn a multi-modal prior distribution to set the heuristic matrix for
ACO, evaluated on seven combinatorial optimization problems.

Adaptive Solution Prediction via Machine Learning

29

• Limitations of Offline-Trained ML Models: Accuracy is often limited by

• Static, one-shot predictions that do not adapt during the search process.

• Challenges in crafting features that effectively represent decision variables.

• Distribution shift between training and testing instances.

• Adaptive Solution Prediction (ASP) (EJOR 2023)(Shen et al., 2023)

• Refines ML predictions iteratively during the search on a problem instance.

• Incorporates feedback from search to progressively enhance prediction.

• Use statistical features extracted from sampled solutions to update predictions over time.

• Examples of statistical features include:

• Correlation between variable values and objective value

• Frequency of variables used in high-quality solutions (e.g., pheromone update in ACO)

• As the search generates better solutions, statistical features evolve, leading to more informed
and accurate predictions.

Adaptive Solution Prediction via Machine Learning

30

Relationship Between ASP and EDAs

31

Similarities
• Both sample the solution space of a specific instance.
• Both update a probability distribution to guide toward

better solutions.
• Both exhibit online learning through iterative

refinement.
Differences

• ASP uses an offline-trained ML model with knowledge
from historical instances;

• EDAs (Estimation of Distribution Algorithms)
typically learn from scratch during each run.

• ASP generalizes EDAs:
-For example, ACO updates probabilistic mode
(pheromone) using fixed rules.
-ASP builds its prediction model from data using
multiple features (can include ACO-style rules).

Figure: EDA builds and sample an explicit probabilistic
model from a pool of promising candidate solutions
(source: Wikipedia).

Relationship Between ASP and ML-ACO

32

Similarities
• Both integrate machine learning into metaheuristic search for combinatorial optimization.
• Both use ML predictions to guide solution construction or sampling.
• Both allow for adaptive behavior during problem-solving.

Differences

Aspect ML-ACO ASP

Integration
Point

Injects ML into ACO components (pheromone,
heuristic)

Predicts variable values to
guide solution construction

Adaptivity Often static once ML predictions are embedded
Dynamically refined using
feedback from ongoing
search

Learning
Mode

Uses ML to improve ACO's components offline
Uses offline ML + online
statistical adaptation

Generalization Enhances specific ACO variants (e.g., SVM-ACO)
General
framework applicable
beyond ACO

Challenges and Future Directions

33

• Key Challenges

• Generalization Across Problems: Building ML models that work across a class of problems or broader
MILP remains difficult.

• Feasibility & Guarantees: ML predictions may violate constraints or yield infeasible solutions;
providing optimality gap guarantee is challenging.

• Refining Predictions: Most ML models produce static, one-shot predictions. Online refinement and
instance-specific adaptation are underexplored.

• Future Directions

• Expanding to Other Algorithms & Problems: Apply ML to enhance e.g., PSO, GA, or handle dynamic
and multi-objective optimization problems.

• Cross-Domain Generalization: Develop generic ML models using meta-learning, instance-space
analysis, or domain-agnostic feature representations.

• Adaptive Learning: Move beyond ASP to integrate feedback (and possibly re-training) during search
for better adaptability and ML predictions.

• Exploring New ML Paradigms: Leverage LLMs for heuristic code generation and MILP model
formulation (see next sections).

References

34

• (Li et al., 2018) Li, Z., Chen, Q., & Koltun, V. (2018). Combinatorial optimization with graph convolutional networks and guided tree search. Advances in Neural Information Processing

Systems.
• (Shen et al., 2021) Shen, Y., Sun, Y., Eberhard, A., & Li, X. (2021, July). Learning primal heuristics for mixed integer programs. In 2021 International Joint Conference on Neural

Networks (IJCNN) IEEE.

• (Sun et al., 2019) Sun, Y., Li, X., & Ernst, A. (2019). Using statistical measures and machine learning for graph reduction to solve maximum weight clique problems. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 43(5), 1746-1760.

• (Lauri et al., 2019) Lauri, J., & Dutta, S. (2019, July). Fine-grained search space classification for hard enumeration variants of subset problems. In Proceedings of the AAAI Conference
on Artificial Intelligence (Vol. 33, No. 01, pp. 2314-2321).

• (Ding et al., 2020) Ding, J. Y., Zhang, C., Shen, L., Li, S., Wang, B., Xu, Y., & Song, L. (2020, April). Accelerating primal solution findings for mixed integer programs based on solution

prediction. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 02, pp. 1452-1459).
• (Sun et al., 2021) Sun, Y., Ernst, A., Li, X., & Weiner, J. (2021). Generalization of machine learning for problem reduction: a case study on travelling salesman problems. OR

Spectrum, 43(3), 607-633.
• (Lauri et al., 2023) Lauri, J., Dutta, S., Grassia, M., & Ajwani, D. (2023). Learning fine-grained search space pruning and heuristics for combinatorial optimization. Journal of

Heuristics, 29(2), 313-347.

• (Sun et al., 2022a) Sun, Y., Ernst, A. T., Li, X., & Weiner, J. (2022). Learning to generate columns with application to vertex coloring. In The Eleventh International Conference on
Learning Representations (ICLR).

• (Spieckermann et al., 2025) Spieckermann, C., Minner, S., & Schiffer, M. (2025). Reduce-then-Optimize for the Fixed-Charge Transportation Problem. Transportation Science, 59(3),
540-564.

• (Shen et al., 2022) Shen, Y., Sun, Y., Li, X., Eberhard, A., & Ernst, A. (2022, June). Enhancing column generation by a machine-learning-based pricing heuristic for graph coloring.

In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 36, No. 9, pp. 9926-9934).
• (Sun et al., 2022b) Sun, Y., Wang, S., Shen, Y., Li, X., Ernst, A. T., & Kirley, M. (2022). Boosting ant colony optimization via solution prediction and machine learning. Computers &

Operations Research, 143, 105769.
• (Ye et al., 2023) Ye, H., Wang, J., Cao, Z., Liang, H., & Li, Y. (2023). DeepACO: Neural-enhanced ant systems for combinatorial optimization. Advances in Neural Information

Processing Systems (NeurIPS), 36, 43706-43728.

• (Liu et al., 2023) Liu, Y., Qiu, J., Hart, E., Yu, Y., Gan, Z., & Li, W. (2023, July). Learning-based neural ant colony optimization. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO) (pp. 47-55).

• (Ramírez et al., 2023) Ramírez Sánchez, J. E., Chacón Sartori, C., & Blum, C. (2023, July). Q-Learning ant colony optimization supported by deep learning for target set selection.
In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (pp. 357-366).

• (Xu et al., 2024) Xu, H., Shen, Y., Sun, Y., & Li, X. (2024, July). Machine Learning-Enhanced Ant Colony Optimization for Column Generation. In Proceedings of the Genetic and

Evolutionary Computation Conference (GECCO) (pp. 1073-1081).
• (Kim et al., 2025) Kim, M., Choi, S., Kim, H., Son, J., Park, J., & Bengio, Y. Ant Colony Sampling with GFlowNets for Combinatorial Optimization. In The 28th International Conference

on Artificial Intelligence and Statistics (AISTATS).
• (Shen et al., 2023) Shen, Y., Sun, Y., Li, X., Eberhard, A., & Ernst, A. (2023). Adaptive solution prediction for combinatorial optimization. European Journal of Operational

Research, 309(3), 1392-1408.

Two PhD Scholarships Available

35

•Research Area

• Enhancing Combinatorial Optimisation with Machine Learning

•Scholarship Details

• Stipend: AUD $35,886 per annum (tax-free)

• Duration: 3.5 years

• Tuition: Full tuition fee waiver

• Location: RMIT University (Collaborate with Monash & La Trobe), Melbourne

•Contact:
Prof Xiaodong Li – xiaodong.li@rmit.edu.au
Dr Yuan Sun – yuan.sun@latrobe.edu.au

Business Optimization and Problem Formulation
Using Large Language Models
Yuan Sun, La Trobe University, Melbourne, Australia

Business Optimization
Using mathematical models and analytical techniques to enhance decision-
making, improve efficiency, reduce costs, and maximize profitability for a
business.

Typical Business Optimization Problems:

➢ Supply Chain Optimization

➢ Job Shop Scheduling

➢ Inventory Management

➢ Vehicle Routing Problem

➢ Production Planning

➢ Portfolio Optimization

➢ Staff Scheduling

37

Example
➢ I am a retailer selling laptops.

➢ Currently, there are 1015 laptops in the store.

➢ Each laptop in inventory incurs a cost of $1.0 per
week.

➢ The forecast demand for laptops at the store in
the next 8 weeks are {…}.

➢ Ordering laptops incurs a fixed cost of $2000 per
order with up to 6000 laptops.

➢ What is the best plan to order laptops for the next
8 weeks to minimise the inventory and logistic
costs while satisfying demand?

38

Challenges

39

• Requires expert knowledge to
translate natural language into
solvable models

• Experts must have strong
programming skills

• Interpretation of results and
turning them into business
actions is non-trivial

➢ Expertise is scarce, expensive, and often specialized to one technique.

➢ Optimization process is time-consuming even for skilled professionals.

Traditional way of applying optimization to solve business problems:

Automating Problem Formulation Using LLMs

40

Aim to use LLMs to automatically
convert natural language
descriptions of business problems
into:

• Mathematical models

• Computer programs

This automation reduces reliance on
expert knowledge and speeds up
the optimization process (Ramamonjison

et al., 2022)

Early Efforts and Examples

Academic:

• Stanford University

• University of Cambridge

• Zhejiang University

• Chinese University of Hong
Kong

Industry:

• Huawei

• Gurobi

• Alibaba

• Microsoft

41

OptiMUS: Scalable Optimization
Modeling with (MI)LP Solvers and

Large Language Models

Ali Ahmaditeshnizi, Wenzhi
Gao, Madeleine Udell

ICML 2024

Augmenting Operations Research
with Auto-Formulation of
Optimization Models from

Problem Descriptions

Rindranirina Ramamonjison, Haley
Li, Timothy T. Yu, Shiqi He, et al.

EMNLP 2022

Method Overview

Prompt-Based Techniques

• Use carefully crafted prompts to guide LLMs in translating natural language into
optimization models.

Prompt Optimization

• Iteratively refine prompts based on model output and feedback to improve formulation
accuracy.

Fine-Tuning Approaches

• Train LLMs on domain-specific datasets (fully or efficiently) to enhance performance and
consistency.

Workflow Architectures

• Structure the problem-solving process using single-agent or multi-agent systems for
modular reasoning.

Retrieval-Augmented Generation (RAG)

• Dynamically fetch and insert relevant past examples or context to improve task relevance
and accuracy. 42

Zero-Shot Prompting

Use a LLM to formulate an optimization model
from natural language with no examples(Ahmed et
al., 2024)

Strengths:

• Easy to use and implement

• No labelled data or fine-tuning

• Compatible with commercial LLMs

Limitations:

• Accuracy may drop on complex tasks

• Highly sensitive to prompt phrasing

43

Formulate this problem as a MIP model:
I am a retailer selling laptops. Currently,
there are 1015 laptops in the store. Each
laptop in inventory incurs a cost of $1.0
per week…

Here’s a MIP formulation for the problem:

Prompt Optimization

Notable Methods:
• OPRO(Yang et al., 2024) – Large Language

Models as Optimizers: Uses LLMs to
propose and refine prompts iteratively
based on performance feedback.

• EvoPrompt(Guo et al., 2024) – LLMs +
Evolutionary Algorithms: Applies
evolutionary search to discover high-
performing prompts through
generations.

44

➢ The process of automatically improving prompts to maximize LLM performance
on a task.

➢ Altering the wording or structure of prompts to better align with model
expectations.

Benefit:
Automates the search for high-quality
prompts.

Example

Few-Shot Prompting

45

Q: A bakery makes two items: bread and
cake. Bread takes 1 hour to bake and
cake takes 2 hours. The oven is available
for 40 hours per week. Bread earns $4
profit, and cake earns $7. Formulate an
integer linear programming model to
maximize profit.

A: max 4B + 7C
s.t. B + 2C ≤ 40

B, C ∈ ℕ₀

Q: A company produces products A and
B. Each A requires 2 hours of labor, each
B requires 1 hour. With 100 total labor
hours available and profits of $30 for A
and $20 for B, formulate a MIP model to
maximize profit.

Few-Shot Prompt

➢ LLM is shown a few examples of input-output
pairs before being asked to solve a new task.

➢ Demonstrates how a problem description
maps to formulation.

Benefits:

• Enables LLMs to learn task patterns

• Potentially more accurate than zero-shot
prompting

Limitations:

• Limited by prompt token length (can only
include a few examples)

• Performance highly depends on quality and
diversity of examples

New Task

Retrieval-Augmented Generation (RAG)

➢ Enhances LLMs by retrieving
relevant documents and
inserting them into prompts.

➢ Helps handle complex or
domain-specific tasks with
limited LLM internal
knowledge.

46

DRoC (Decomposed Retrieval of Constraints)(Jiang et al., 2025a) :

• Decomposes complex optimization problems into individual constraints.

• Retrieves relevant documentation/code for each constraint.

• Merges retrieved content to assist LLMs in generating accurate solver-
compatible programs.

Final model:
max 4B + 7C
s.t. B + 2C ≤ 40

B, C ∈ ℕ₀

Example
Q: A bakery makes two items: bread and cake. Bread takes 1 hour to bake and cake
takes 2 hours. The oven is available for 40 hours per week. Bread earns $4 profit, and
cake earns $7. Formulate an integer linear programming model to maximize profit.

A: 1) Let B = number of bread loaves, C = number of cakes.
2) These must be non-negative integers.
3) Objective: Maximize profit → 4B + 7C
4) Constraint: Bread takes 1 hour, cake takes 2 → B + 2C ≤ 40

Q: A company produces products A and B. Each A requires 2 hours of labor, each B
requires 1 hour. With 100 total labor hours available and profits of $30 for A and $20
for B, formulate a MIP model to maximize profit.

Chain-of-Thought Prompt

Chain-of-Thought Prompting

Encourages LLMs to reason step-by-step before generating the final formulation(Wei et al., 2022)

Mimics human thought processes by decomposing complex tasks into logical steps

47

New Task

Single-Agent Workflow

➢ A single LLM agent is used to handle the
entire problem formulation task in a modular,
step-by-step manner.

➢ The LLM is prompted to sequentially
complete subtasks: extract variables, define
objective, write constraints, and generate
code.

➢ More scalable for long problems due to
reduced context length

➢ Compatible with prompt-based or fine-
tuned models

48

Multi-Agent Workflow

➢ Inspired by expert collaboration and chain-of-responsibility paradigms.

➢ Multiple LLMs or role-specialized agents collaborate in a structured
workflow to perform different subtasks in problem formulation.

➢ Roles may include: Conductor (Coordinator), Interpreter, Formulator,
Programmer, and Validator.

Advantages:

• Improved performance via task specialization

• Easier to debug or refine each step/agent

Limitations:

• Higher complexity and resource-intensive (compute, cost, latency)

• Requires careful design of communication between agents
49

Multi-Agent Workflow Example

Chain-of-Experts (CoE)(Xiao et al., 2024)

• A central Conductor coordinates specialized LLM agents (e.g., Interpreter, Modeler, Programmer).

• Agents collaborate iteratively to analyze, formulate, and verify optimization models.

• Combines forward reasoning (expert-driven modeling) with backward reflection (feedback-based
revision).

50

OptiMUS(AhmadiTeshnizi et al., 2024)

• Manager: Oversees the workflow and coordinates agent interaction.

• Preprocessor: Extracts variables, objectives, and constraints from text.

• Formulator: Converts each clause into formal math (e.g., LaTeX).

• Programmer: Generates and debugs solver code.

• Evaluator: Runs code and checks for correctness.

51

Multi-Agent Workflow Example

Agentic Workflow Optimisation

➢ Traditional multi-agent LLM workflows require manual design of agent roles and
communication strategies.

➢ Agentic workflow optimisation aims to automatically generate and refine multi-agent
workflows for complex tasks like problem formulation.

➢ Enhances scalability, adaptability, and performance without hand-engineered pipelines.

52

AFLOW(Zhang et al., 2025): Automating
Agentic Workflow Generation
• Represents workflows as graphs of

modular, reusable LLM-invoking
nodes.

• Uses Monte Carlo Tree Search
(MCTS) to explore and optimize
workflows.

Fine-Tuning

➢ Refers to training a pre-trained
language model on a specific
dataset of input-output pairs.

➢ Input: problem description

➢ Output: formulation & code

53

Strengths
• Improves performance on domain-specific or complex tasks
• More reliable and consistent than prompt-only methods

Limitations
• Requires labelled datasets (e.g., NL + LP/MIP pairs)
• Computationally expensive and time-consuming

Fine-Tuning Examples

Full Fine-Tuning: Updates all model parameters on domain-specific data

Efficient Fine-Tuning: Updates a subset of parameters or adds lightweight modules:

➢ LoRA(Hu et al., 2022) – Low-rank adaptation to attention weights

➢ Adapters – Trainable modules inserted into the transformer stack

Recent Efforts

➢ LM4OPT(Ahmed et al., 2024): Fine-tunes LLaMA-2-7B to convert natural language into
optimization models using the NL4Opt dataset.

➢ OptLLM(Zhang et al., 2024): Trains Qwen-based agents with multi-turn interaction and solver
feedback for optimization modeling.

➢ ORLM(Huang et al., 2024): Fine-tunes several open-source 7B-scale LLMs using the open-instruct
framework and OR-Instruct data.

➢ LMBO(Amarasinghe et al., 2023): Applies full fine-tuning to real-world production scheduling,
demonstrating improved task performance and code generation.

➢ LLMOPT(Jiang et al., 2025b): Combines structured five-part representations with supervised fine-
tuning for general-purpose optimization modeling. 54

Benchmark Datasets

Evaluate the capability and accuracy of LLMs in formulating optimization models

Support fine-tuning and instruction alignment for task specialization

Existing Benchmark Datasets:

• NL4Opt(Ramamonjison et al., 2023): 1101 annotated LP problems across 6 domains and tasks.

• Mamo(Huang et al., 2025): 863 MILP problem instances (652 Easy, 211 Complex)

• NLP4LP(AhmadiTeshnizi et al., 2024): 65 textbook-sourced LP and MILP instances

• ComplexOR(Xiao et al., 2024): 37 expert-annotated OR problems from diverse real-world sources

• IndustryOR(Huang et al., 2024): 100 real-world OR problems, 5 types, 3 difficulty levels

• OPTIBENCH(Yang et al., 2025): 605 verified problems covering LP, NLP, MIP, and tabular data

• Sched(Amarasinghe et al., 2023): Two scheduling datasets with 1,700 instances via modular expansion.

55

Synthetic Datasets

Motivation

➢ Lack of large-scale, high-quality labelled datasets for optimization tasks.

➢ Manual annotation is expensive, time-consuming, and requires domain expertise.

Synthetic Dataset & Approach

➢ LLMOPT(Jiang et al., 2025b): augments 1,763 seed problems using diverse instruction templates
via GPT-4, followed by expert filtering and detailed labeling.

➢ OR-Instruct(Huang et al., 2024): Generated by expanding 686 seed cases using GPT-4, structured
prompts, augmentation (e.g., rephrasing, constraint variation), and human filtering to ensure
correctness.

➢ RESOCRATIC-29K(Yang et al., 2025): Generated by reverse-constructing optimization problems
from formulations, then translating and filtering them for correctness and diversity.

56

Challenges and Future Directions

Challenges

➢ Ambiguity and missing details in natural language descriptions

➢ Vast and diverse space of business optimization problem types

➢ Limited availability of high-quality, labeled datasets for training and evaluation

➢ Prompt sensitivity, hallucination, and generation of solver-incompatible models

➢ High cost and complexity of running or accessing large language models

Future Directions

➢ Scalable synthetic data generation (e.g., ReSocratic) for robust training

➢ Enriched benchmarks covering various real-world business optimization tasks

➢ Enhanced prompt optimization and retrieval-augmented generation methods

➢ Agentic workflow automation (e.g., AFLOW) for multi-agent coordination

➢ Integration of validation tools and solver feedback for self-debugging

➢ Development of cost-efficient LLMs with strong optimization performance 57

References
• (Ramamonjison et al., 2022) Ramamonjison, R., Li, H., Yu, T., He, S., Rengan, V., Banitalebi-Dehkordi, A., ... & Zhang, Y. (2022, December). Augmenting Operations

Research with Auto-Formulation of Optimization Models From Problem Descriptions. In Proceedings of the EMNLP: Industry Track (pp. 29-62).
• (Ahmed et al., 2024) Ahmed, T., & Choudhury, S. (2024). LM4OPT: Unveiling the potential of Large Language Models in formulating mathematical optimization

problems. INFOR: Information Systems and Operational Research, 62(4), 559-572.
• (Yang et al., 2024) Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D., & Chen, X. (2024). Large Language Models as Optimizers. In The Twelfth International

Conference on Learning Representations (ICLR).
• (Guo et al., 2024) Guo, Q., Wang, R., Guo, J., Li, B., Song, K., Tan, X., ... & Yang, Y. (2024) Connecting Large Language Models with Evolutionary Algorithms Yields

Powerful Prompt Optimizers. In The Twelfth International Conference on Learning Representations (ICLR).
• (Jiang et al., 2025a) Jiang, X., Wu, Y., Zhang, C., & Zhang, Y. (2025). DRoC: Elevating Large Language Models for Complex Vehicle Routing via Decomposed Retrieval of

Constraints. In 13th International Conference on Learning Representations, ICLR 2025.
• (Wei et al., 2022) Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., ... & Zhou, D. (2022). Chain-of-thought prompting elicits reasoning in large language

models. Advances in Neural Information Processing Systems (NeurIPS), 35, 24824-24837.
• (Xiao et al., 2024) Xiao, Z., Zhang, D., Wu, Y., Xu, L., Wang, Y. J., Han, X., ... & Chen, G. (2024). Chain-of-experts: When LLMs meet complex operations research problems.

In The twelfth International Conference on Learning Representations (ICLR).
• (AhmadiTeshnizi et al., 2024) AhmadiTeshnizi, A., Gao, W., & Udell, M. (2024, July). OptiMUS: scalable optimization modeling with (MI)LP solvers and large language

models. In Proceedings of the 41st International Conference on Machine Learning (pp. 577-596).
• (Zhang et al., 2025) Zhang, J., Xiang, J., Yu, Z., Teng, F., Chen, X., Chen, J., ... & Wu, C. (2025). AFlow: Automating agentic workflow generation. In The Thirteenth

International Conference on Learning Representations (ICLR).
• (Hu et al., 2022) Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., ... & Chen, W. (2022). LoRA: Low-rank adaptation of large language models. In International

Conference on Learning Representations ICLR, 1(2), 3.
• (Zhang et al., 2024) Zhang, J., Wang, W., Guo, S., Wang, L., Lin, F., Yang, C., & Yin, W. (2024, June). Solving General Natural-Language-Description Optimization

Problems with Large Language Models. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (Volume 6: Industry Track) (pp. 483-490).

• (Huang et al., 2024) Huang, C., Tang, Z., Ge, D., Hu, S., Jiang, R., Wang, B., ... & Zheng, X. (2024). ORLM: A Customizable Framework in Training Large Models for
Automated Optimization Modeling. Accepted by Operations Research.

• (Amarasinghe et al., 2023) Amarasinghe, P. T., Nguyen, S., Sun, Y., & Alahakoon, D. (2023). Language Models for Business Optimisation with a Real World Case Study in
Production Scheduling. arXiv preprint arXiv:2309.13218.

• (Jiang et al., 2025b) Jiang, C., Shu, X., Qian, H., Lu, X., Zhou, J., Zhou, A., & Yu, Y. (2025). LLMOPT: Learning to Define and Solve General Optimization Problems from
Scratch. In The Thirteenth International Conference on Learning Representations (ICLR).

• (Ramamonjison et al., 2023) Ramamonjison, R., Yu, T., Li, R., Li, H., Carenini, G., Ghaddar, B., ... & Zhang, Y. (2023, August). NL4Opt competition: Formulating
optimization problems based on their natural language descriptions. In NeurIPS 2022 Competition Track (pp. 189-203). PMLR.

• (Huang et al., 2025) Huang, X., Shen, Q., Hu, Y., Gao, A., & Wang, B. (2025, April). LLMs for Mathematical Modeling: Towards Bridging the Gap between Natural and
Mathematical Languages. In Findings of the Association for Computational Linguistics: NAACL 2025(pp. 2678-2710).

• (Yang et al., 2025) Yang, Z., Wang, Y., Huang, Y., Guo, Z., Shi, W., Han, X., ... & Tang, J. (2025). OptiBench meets ReSocratic: Measure and improve LLMs for optimization
modeling. In The Thirteenth International Conference on Learning Representations (ICLR).

58

Evolutionary Optimization Guided by
Large Models
Huigen Ye, Tsinghua University, Beijing, P. R. China

Background
• Rapid Progress of Large Models

• LLM capabilities have accelerated rapidly

• Complex tasks are now within reach
• “Impossible” problems are becoming solvable

60
(a) Breakthroughs on AI benchmarks from 2020 to 2025(Yao et al., 2025)

Background

61(a) Categorization of research works on the integration of LLMs and Evolutionary Algorithms (EAs) (Wu et al.,

2024)

 LLMs for optimization solving

LLMs for instance constraint repair

• How LLMs Enhance Evolutionary Algorithms
• LLMs for optimization solving

• Black-box optimization

• Algorithm generation

• LLMs for repairing infeasible optimization models

Background

62

• How LLMs Enhance Evolutionary Algorithms
• Black-box Optimization

• LLM acts as a solver via dialogue

• Or serves as a search operator
• Easy to use, but limited by context & reasoning

• Only suitable for small-scale problems

• Algorithm Generation

• LLM generates optimization algorithms

• Algorithms are shorter than full problem inputs
• Leverages LLM's code generation strength

• Scalable to large-scale problems

(a) Two main LLM-enhanced EA approaches for optimization solving(Wu et al., 2024)

Small-scale optimization problem

 Large-scale optimization problem

Basic Method

63

• How EA Combines with LLM to Generate Optimization Code
• Whole-code Evolution

• Directly evolve entire heuristic codes

• Different paradigms may mix (e.g. Genetic Algorithm + Feasibility Pump)
• Easy to use, but limited by context & reasoning

• Often unstable due to incompatible structures

• Operator-level Evolution
• Fix a high-quality heuristic framework (e.g. Large Neighborhood Search)

• Use EA + LLM to evolve key operators (e.g. neighborhood selection)
• More stable and effective

(a) Evolve the entire heuristic algorithm (b) Evolve a component (e.g. operator)

Basic Method

64

• Practical Workflow of EA + LLM for Code Evolution
• Select Target

• Decide which operator to evolve (e.g., neighborhood selection)

• Define its input and output interfaces

• Initialize Population
• Collect existing implementation strategies

• Or generate initial candidates via LLM using interface descriptions

• Parent Selection
• Use standard EA techniques (e.g., tournament, roulette wheel)
• Or let LLM define custom selection rules

Population

LLM Offspring Fitness

Gate Unit

Operator

(a) EA + LLM workflow for evolving heuristic operators

Basic Method

65

• Practical Workflow of EA + LLM for Code Evolution
• Generate Offspring

• Use LLM as a crossover/mutation operator

• Input parent code, output new candidate strategy

• Evaluate and Filter
• Run offspring on tasks to compute fitness

• Gate unit decides whether to keep, replace, or discard based on performance

• Eventually, you obtain an efficient, evolved operator

Population

LLM Offspring Fitness

Gate Unit

Operator

(a) EA + LLM workflow for evolving heuristic operators

Basic Method

66

• How to Use LLMs as Black-box Optimizers via API
• Key Idea

• We use the LLM as a black-box optimizer

• Just send the parent strategy + prompt to the API
• and extract new offspring code from the response

• Example
• Using the OpenAI API (https://platform.openai.com/docs/overview)
•

Population

Offspring Fitness

Gate Unit

(a) Parent code + prompt → GPT → New offspring code

https://platform.openai.com/docs/overview

Advanced Method

67

• [Nature] Mathematical discoveries from program search with
large language models(Romera-Paredes et al., 2024)

• Ranked Prompting for Evolution
• Show 3 programs: A > B > C

• → LLM learns what "better" looks like

• Island Model
• Independent evolution of subgroups

• → Encourages diversity, avoids local optima

(a) FunSearch framework[3]

(b) Evolutionary Method with Island Model(Romera-Paredes et al., 2024)

Advanced Method

68

• [ICML2024 Oral] Evolution of Heuristics: Towards Efficient
Automatic Algorithm Design Using Large Language Model
(Liu et al., 2024)

• Key Innovation: Co-evolution of Code and Thought

• Before-Most prior work (e.g., FunSearch) evolves code only

• EOH's Idea-Evolve both:

• Natural language description ("thought"):
summarizes the high-level idea

• Code: implements the details

• Benefit

• → Thought helps understanding and
generalization

• → Code offers executable precision

(a) EOH framework(Liu et al., 2024)

Advanced Method

69

• [ICML2024 Oral] Evolution of Heuristics: Towards Efficient
Automatic Algorithm Design Using Large Language Model
(Liu et al., 2024)

• Prompts’ Key Idea:
• Use LLM as an evolutionary operator with carefully designed prompt

strategies→ Mimic how humans generate new ideas

• Two Categories of Prompts:
• Exploration (E-series)

• E1 – "Create something new”

• E2 – "Same idea, new form”

• Modification (M-series)
• M1 – Improve it

• M2 – Tune it

• M3 – Simplify it

(a) EOH framework(Liu et al., 2024)

Advanced Method

70

• [ICML2025 Spotlight] Large Language Model-driven Large
Neighborhood Search for Large-Scale MILP Problems(Ye et al.,
2025)

• Problem in Prior Work
• Prompt strategies are fixed or handcrafted

• Evolution only happens at the strategy level
• Leads to:

• Limited diversity in generated heuristics

• Easy stagnation in local optima

• Key Innovation
• Dual-layer Self-evolutionary Structure

(a) Dual-layer evolution

Layer What It Evolves Goal

 Outer Layer Prompt strategies (how LLM evolves) Exploration / Diversity

 Inner Layer Heuristic strategies (code + thought) Exploitation / Convergence

(b) Functional roles of the two layers in the self-evolutionary LLM agent

Advanced Method

71

• [ICML2025 Spotlight] Large Language Model-driven Large
Neighborhood Search for Large-Scale MILP Problems (Ye et al., 2025)

• Problem in Prior Work
• LLMs don’t know which direction to evolve
• Because previous generations only give them:

• Few examples

• No clear contrast between good and bad → Evolution is blind and directionless

• Key Innovation
• Inspired by-Large Language Models as Optimizers(Yang et al., 2024)

• LLMs can optimize without gradients just by seeing solution + score pairs and reasoning
over natural language

• Differential Memory for Directional Evolution
• Provide the LLM with:

• Multiple strategies + both their scores and ranks

• Natural language thoughts

• → So it can learn from differences and evolve better offspring strategies

Advanced Method

72

• [ICML2025 Spotlight] Large Language Model-driven Large
Neighborhood Search for Large-Scale MILP Problems (Ye et al., 2025)

(a) Evolution of Dual-layer Self-evolutionary LLM Agent for online bin packing (Ye et al.,

2025)

Advanced Method

73

• [ICML2025 Spotlight] Large Language Model-driven Large
Neighborhood Search for Large-Scale MILP Problems (Ye et al., 2025)

(a) Evolutionary Progress of Heuristic
Strategies in Online Bin Packing

(b) Heuristic Designed by Dual-layer Self-evolution LLM Agent

Future Directions

74

• Multimodal Optimization with LLMs
• Combine problem modeling and solution generation using multimodal inputs

(e.g., text + code)

• Enable end-to-end optimization pipelines via LLMs' multimodal understanding

• Improving Diversity and Generalization
• Introduce continual learning mutation operators to adapt to changing problem

spaces

• Use performance-based feedback to evolve more effective mutation strategies

• Modular Code Generation for Complex Logic
• Decompose complex logic into modular sub-tasks for better generation

• Use interactive interfaces to guide LLMs and EAs in coordinated code generation

References
• (Yao et al., 2025) Yao S, Wei J. The Second Half[EB/OL]. https://ysymyth.github.io/The-Second-Half/, accessed May 2, 2025.

• (Wu et al., 2024) Wu X, Wu S, Wu J, et al. Evolutionary computation in the era of large language model: Survey and roadmap[J]. IEEE Transactions on

Evolutionary Computation, 2024.

• (Romera-Paredes et al., 2024) Romera-Paredes B, Barekatain M, Novikov A, et al. Mathematical discoveries from program search with large language

models[J]. Nature, 2024, 625(7995): 468-475.

• (Liu et al., 2024) Liu F, Xialiang T, Yuan M, et al. Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using Large Language Model[C].

International Conference on Machine Learning. PMLR, 2024: 32201-32223.

• (Ye et al., 2025) Ye H, Xu H, Yan A, et al. Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems[C]. International

Conference on Machine Learning. 2025.

• (Yang et al., 2024) Yang C, Wang X, Lu Y, et al. Large Language Models as Optimizers[C]. The Twelfth International Conference on Learning

Representations. 2024.

75

About Us

76

THUIAR Group(Website: https://thuiar.github.io/)

• Department of Computer Science and Technology, Tsinghua University

• Academic Publications:

https://thuiar.github.io/

Test Case Generation Using Large Language Models

Yuan Yuan, Beihang University, Beijing, P. R. China

Contents

• Introduction & Motivation

• Background & Prior Work

• TestChain Framework

• Experiments

• Discussion

78

Introduction & Motivation

Text-to-Testcase Generation

• Converts natural-language

problem descriptions into

executable test code

• Input: Problem description,

target function definition

• Output: Test cases that can be

used to evaluate programs

79
Fig. 1 Illustration of the process of text-to-

testcase generation.

Introduction & Motivation

Key Features (Text-to-Testcase Generation)

• No Reference Program: Infer expected behavior solely from

natural-language descriptions, without a ground-truth program to

validate against

• Risk of Incorrect Test Cases: LLMs may hallucinate or misinterpret the

specification

• Beyond Traditional Rule-Based Methods: Rule-driven approaches

cannot easily scale to arbitrary problem descriptions

• Need for Semantic Understanding: Generating valid tests requires deep

comprehension of requirements
80

Introduction & Motivation

Why Automatic Text-to-TestCase Generation Matters

• Test cases are critical for ensuring code quality and reliability

• Manual test writing is time-consuming, LLMs offer promise but often

produce incorrect tests

81

Requires a lot of manual work

Easy and fast, but may contain errors

Introduction & Motivation

• Key Challenge

• LLMs need to predict the correct expected test output, which is difficult

when the reference program is available

• Main Contributions

• A multi-agent framework: TestChain

• Code-Assisted Reasoning to eliminates LLM hallucinations and input-

output mismatches

82

Background & Prior Work

• Traditional Approaches

• Rule-based or template methods lack flexibility

• LLM-Based Approaches

• CodeT(Chen et al., 2022a) / Reflexion(Shinn et al., 2023): Generate tests from

prompts, but ignore correctness

• Pytester-770M(Takerngsaksiri et al., 2025): RL-trained, still prone to copying

patterns or missing edge cases

83

TestChain Framework

• Framework Overview

• Core Idea: Factorize generation into two specialized agents

• Pipeline FLow: Prompt → 2. Designer → {Candidate Inputs} → 3.

Reasoning → {Final Test Cases}

84

Fig.2 Illustration of the TestChain framework.

TestChain Framework

• Designer Agent

• Task: Generate diverse, representative test inputs

• Prompt Template (Example):

85

You are a Python tester. Your task is to generate a comprehensive set of test inputs for
the given function signature and problem description.
The generated test inputs should cover all requirements, edge cases, exceptional
scenarios, and satisfy the constraints specified in the problem description.
Write each test input in a single line and start with a `input:` prefix, and write as many
test inputs as possible. Put your answer in a text block, for example:
```text
# test inputs here
```


TestChain Framework

• Reasoning Agent

• Task: For each input tuple, compute the correct output step-by-step

• Two-Phase Strategy:

1. Decomposition: LLM generates natural-language reasoning steps (e.g., “Sort array,

find median, count subarrays”).

2. Code-Assisted Execution: Alternate between reasoning and code-execution

86

Final Answer

TestChain Framework

• Code-Assisted Flow (Reasoning

Agent)

• LLM writes small Python snippets to

carry out sub-computations

• Snippets are executed in a live

interpreter, actual numeric results are

fed back

• Final output is computed based on

verified intermediate values

87Fig.3 Illustration of an end-to-end example.

Function and Docstring
from typing import List
def countSubarrays(nums: List[int], k: int) -> int:

"""
You are given an array `nums` of size `n` consisting of distinct

integers from `1` to `n` and a positive integer `k`. Return the number
of non-empty subarrays in `nums` that have a median equal to `k`.

"""

Test Input
[1, 3, 2, 5, 4]

TestChain: Reasoning Agent

nums = [1, 3, 2, 5, 4]
subarrays = []
n = len(nums)
for start in range(n):

for end in range(start + 1, n +
1):

subarrays.append(num
s[start:end])
subarrays

def find_median(subarray):
subarray.sort()
length = len(subarray)
if length % 2 == 1:

return subarray[length // 2]
else:

return subarray[(length // 2) - 1]
k = 4
count = 0
for subarray in subarrays:

if find_median(subarray) == k:
count += 1

count

Now that I have all possible subarrays, I need to calculate
the median for each subarray and check if it equals `k`. I
will write code to find the median of each subarray and count
those with a median equal to `4`.

Out[1]: [[1], [1,
3], [1, 3, 2], [1,
3, 2, 5], [1, 3, 2,

5, 4], [3], [3, 2],
[3, 2, 5], [3, 2, 5,
4], [2], [2, 5], [2,
5, 4], [5], [5, 4],
[4]]

To solve this problem, I need to ...

First, I need to generate all possible subarrays of the given
array. I will write Python code to generate these subarrays.

Out[1]: 3

assert countSubarrays([1, 3, 2, 5, 4], 4) == 3

LLM

LLM

LLM

LLM

LLM

Experiments

• Experimental Procedure

• Test case types

1. Correct (Acc.): Validates correct behavior

without errors

2. Duplicate (Dup.): Repeats previous checks

3. Syntactically Incorrect (Syn.): Fails to parse

due to syntax errors

4. Input-Output MisMatch (Mis.): Asserts

wrong output for given input

5. Other Error (Oth.): Causes unexpected

runtime exceptions

88

Fig.4 Illustration of the Experimental Procedure.

Experiments

• Datasets

• HumanEval(Chen et al., 2021) (Simple Functions), LeetCode-Hard(Shinn et al.,

2023) (Complex Functions)

• Baselines

• Pytester-770M

• CodeT-TG: Test case generation module of CodeT

• Reflexion-TG: Test case genertion module of Reflexion

• LLMs

• Qwen2.5-7B, 14B, 32B, DeepSeek-V2.5, GPT-4o
89

Experiments

• RQ1: Test Case Accuracy

• Acc.: Outperform baselines

across all LLMs and datasets

• Mis.: Drops significantly

• Syn. & Dup. & Oth.: Rates

remain low

TestChain generates more

correct test cases than baselines.
90

Experiments

• RQ2: Test Case Effectiveness

• Two metrics

• Error Program Discrimination (Dis.): The

percentage of error programs detected

(Similar to mutation testing)

• Line Coverage (Cov.): Covered lines /

Total lines

• Experimental Results

• TestChain achieved the highest Dis. and

Cov. in most cases

TestChain produces test cases that

better catch faulty programs and

execute more code.

91

Experiments

• RQ3: Improving Code Generation

• Case 1: Evaluate and selection based

methods, generate 50 programs

• Sampling, Sampling+Filtering(Li et al., 2022),

CodeT(Chen et al., 2022b)

• Case 2: Repair-based methods

• Sampling: Generate 5 programs

• Reflexion(Shinn et al., 2023): Generate 1 program

and fix 4 times

TestChain improves performance of code generation

methods.
92

Experiments

• RQ4: Ablation Study on Code-Assisted

Flow

• Two variants

• R: Reasoning process.

• I: Code interpreter interaction process.

• Experimental Results

• Full Setup (+R, +I) achieves the best

performance

Confirms that both the reasoning process and

code interpreter interaction process are

essential. The combination is key.
93

Discussion

• Current Limitations

• Language Scope: Only Python, function-level

• Compute Overhead: Interpreter calls increase latency in large-scale pipelines

• Future Directions

• Multi-Language Extension: Java, C++, Go

• Prompt Optimization: Automated prompt tuning

• Hierarchical Test Suites: Generate not only function tests but also integration

and system-level tests

94

References
• (Chen et al., 2022a) Chen B, Zhang F, Nguyen A, et al. Codet: Code generation with generated tests[J]. arXiv preprint arXiv:2207.10397, 2022.

• (Shinn et al., 2023) Shinn N, Cassano F, Gopinath A, et al. Reflexion: Language agents with verbal reinforcement learning[J]. Advances in Neural

Information Processing Systems, 2023, 36: 8634-8652.

• (Takerngsaksiri et al., 2025) Takerngsaksiri W, Charakorn R, Tantithamthavorn C, et al. Pytester: Deep reinforcement learning for text-to-testcase

generation[J]. Journal of Systems and Software, 2025, 224: 112381.

• (Chen et al., 2021) Chen M, Tworek J, Jun H, et al. Evaluating large language models trained on code[J]. arXiv preprint arXiv:2107.03374, 2021.

• (Li et al., 2022) Li Y, Choi D, Chung J, et al. Competition-level code generation with alphacode[J]. Science, 2022, 378(6624): 1092-1097.

• (Chen et al., 2022b) Chen B, Zhang F, Nguyen A, et al. Codet: Code generation with generated tests[J]. arXiv preprint arXiv:2207.10397, 2022.

95

Thanks

Any Question?

	Slide 1: Large Language Model Driven Evolutionary Optimization
	Slide 2
	Slide 3
	Slide 4
	Slide 5: Overview: Intelligent Evolutionary Optimization - Guided by Deep Learning and Large Language Models
	Slide 6: Contents
	Slide 7: Background
	Slide 8: Background
	Slide 9: Machine Learning Guided Evolutionary Optimization
	Slide 10: Machine Learning Guided Evolutionary Optimization
	Slide 11: LLM Guided Evolutionary Optimization
	Slide 12: LLM Guided Evolutionary Optimization
	Slide 13: LLM Guided Evolutionary Optimization
	Slide 14: LLM Guided Evolutionary Optimization
	Slide 15: The Tutorial Organization
	Slide 16: References
	Slide 17: Evolutionary Optimization Enhanced by Machine Learning
	Slide 18: Why machine learning can help?
	Slide 19: Solution Prediction via Machine Learning: Training
	Slide 20: Features
	Slide 21: Machine learning models
	Slide 22: Solution Prediction via Machine Learning: Testing
	Slide 23: Constructing Solutions from ML Predictions
	Slide 24: Pruning the Search Space with ML Predictions
	Slide 25: Extensions of ML-Guided Pruning
	Slide 26: Sampling Solutions Based on ML Predictions
	Slide 27: Boosting ACO with ML Predictions
	Slide 28: Extensions of ML-Enhanced ACO
	Slide 29: Adaptive Solution Prediction via Machine Learning
	Slide 30: Adaptive Solution Prediction via Machine Learning
	Slide 31: Relationship Between ASP and EDAs
	Slide 32: Relationship Between ASP and ML-ACO
	Slide 33: Challenges and Future Directions
	Slide 34: References
	Slide 35: Two PhD Scholarships Available
	Slide 36: Business Optimization and Problem Formulation Using Large Language Models
	Slide 37: Business Optimization
	Slide 38: Example
	Slide 39: Challenges
	Slide 40: Automating Problem Formulation Using LLMs
	Slide 41: Early Efforts and Examples
	Slide 42: Method Overview
	Slide 43: Zero-Shot Prompting
	Slide 44: Prompt Optimization
	Slide 45: Few-Shot Prompting
	Slide 46: Retrieval-Augmented Generation (RAG)
	Slide 47: Chain-of-Thought Prompting
	Slide 48: Single-Agent Workflow
	Slide 49: Multi-Agent Workflow
	Slide 50: Multi-Agent Workflow Example
	Slide 51: Multi-Agent Workflow Example
	Slide 52: Agentic Workflow Optimisation
	Slide 53: Fine-Tuning
	Slide 54: Fine-Tuning Examples
	Slide 55: Benchmark Datasets
	Slide 56: Synthetic Datasets
	Slide 57: Challenges and Future Directions
	Slide 58: References
	Slide 59: Evolutionary Optimization Guided by Large Models
	Slide 60: Background
	Slide 61: Background
	Slide 62: Background
	Slide 63: Basic Method
	Slide 64: Basic Method
	Slide 65: Basic Method
	Slide 66: Basic Method
	Slide 67: Advanced Method
	Slide 68: Advanced Method
	Slide 69: Advanced Method
	Slide 70: Advanced Method
	Slide 71: Advanced Method
	Slide 72: Advanced Method
	Slide 73: Advanced Method
	Slide 74: Future Directions
	Slide 75: References
	Slide 76: About Us
	Slide 77: Test Case Generation Using Large Language Models
	Slide 78: Contents
	Slide 79: Introduction & Motivation
	Slide 80: Introduction & Motivation
	Slide 81: Introduction & Motivation
	Slide 82: Introduction & Motivation
	Slide 83: Background & Prior Work
	Slide 84: TestChain Framework
	Slide 85: TestChain Framework
	Slide 86: TestChain Framework
	Slide 87: TestChain Framework
	Slide 88: Experiments
	Slide 89: Experiments
	Slide 90: Experiments
	Slide 91: Experiments
	Slide 92: Experiments
	Slide 93: Experiments
	Slide 94: Discussion
	Slide 95: References
	Slide 96: Thanks

