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• Hua Xu is a tenured Associate Professor in the Department of Computer
Science at Tsinghua University. His research explores intelligent optimization
and human-machine interaction in AI. He has published extensively in top
venues, authored influential monographs such as Intelligent Evolutionary
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received major honors including the National Science and Technology
Progress Award and the Beijing Science and Technology Award, and he
currently serves as Editor-in-Chief of Intelligent Systems with Applications.
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the field through both research and leadership in IEEE CIS Task Forces.
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• Yuan Yuan is currently a Professor with the School of Computer Science and
Engineering, Beihang University, China. His research interests include
evolutionary computation, machine learning, multiobjective optimization and
search-based software engineering. He has served as Associate Editor for
leading journals such as lEEE Transactions on Evolutionary Computation and
IEEE Transactions on Emerging Topics in Computational Intelligence.

• Yuan Sun is a Lecturer in Business Analytics and Artificial Intelligence at La
Trobe University, Australia. He received his BSc in Applied Mathematics from
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machine learning, operations research, and evolutionary computation. His
research has contributed significantly to the emerging area of leveraging
machine learning for combinatorial optimisation. He is the vice-chair of the
IEEE task force on large-scale global optimisation and has organised special
sessions and workshops, and delivered tutorials at the GECCO, PPSN, and CEC
conferences.
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Instructors

• Huigen Ye is a Ph.D. student at Tsinghua University, focusing on applying
machine learning to accelerate large-scale optimization, particularly in mixed-
integer programming. He has published papers in top conferences such as
ICML, ICLR and AAAI. He is actively involved in academic service, serving as a
reviewer for conferences like AISTATS, NeurIPS and ICLR.
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Overview: Intelligent Evolutionary Optimization 
- Guided by Deep Learning and Large Language Models

Hua Xu, Tsinghua University, Beijing, P. R. China
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Background
• Several Optimization Cases

• 3D IC Partitioning Problem(Meitei et al., 2020) 

• Pickup and Delivery Problem with Time Windows(Dumas et al., 1991)

• Supply Chain Management Problem(Villa, 2001) 

• Problem Definition
• Definition:
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Background
• Traditional Mathematical and Exact Methods

• Exact Methods:
• Solver: SCIP(Achterberg, 2009), IPOPT(Biegler et al. 2009), 

Gurobi(Pedroso 2011), CPLEX(Bliek1ú et al., 2014)

• Academic Progress: Advanced Branch-and-Bound 
Techniques(Morrison et al., 2016)，Cutting Plane Methods(Dey 

et al., 2018)  

• Heuristics Method
• Large Neighborhood Search(LNS)(Song et al., 2020) 

• Adaptive Constraint Partition(Ye et al., 2023) 

• Evolution Optimization Method(Liu et al., 2023)

• Challenges

• Exact Methods: Scalability Issues & Exponential Complexity

• Heuristics Method: Careful Parameter Tuning & Cold Start 
Issues

(b) Evolution Optimization Method

(a) Branch-and-Bound Techniques



Machine Learning Guided Evolutionary Optimization

• Evolutionary processes assisted by machine learning(Liu et al., 2023)

• Evolutionary Generator

• Evolutionary Evaluator

• Learnable Evolutionary Discriminator

• More details in Topic I
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Machine Learning Guided Evolutionary Optimization

• Challenge

• Lack of diverse, large-scale training data for evolutionary learning

• Current benchmarks are too small, simple, and fail to reflect real-world 
complexity

• Traditional deep learning models are task-specific and require heavy 
retraining for each new optimization problem

• What we need to do?

• Automated Data Generator(Yang et al., 2024) 

• Comprehensive Benchmark Test Suite(Ye et al., 2025a) 

• Large Language Models (LLMs) to generalize and automate
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LLM Guided Evolutionary Optimization
• Evolutionary processes assisted by LLM

• Key Direction
• LLM-assisted End-to-end Optimization

• Automate both problem formulation and solving.

• LLM-assisted Optimization Algorithm Generation
• Generate heuristic operators for better search.

• LLM-assisted Test Case Generation
• Combine code synthesis with evolutionary search.
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LLM Guided Evolutionary Optimization
• LLM-assisted End-to-end Optimization

• LLMs show strong potential for black-box optimization.

• OPRO(Yang et al., 2023): Iterative solution generation via optimization trajectories.

• LMEA(Liu et al., 2024a): LLMs perform crossover and mutation in EA.

• LEO(Brahmachary et al., 2025): Exploration and exploitation balanced through elitism.

• More details in Topic II
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LLM Guided Evolutionary Optimization
• LLM-assisted Optimization Algorithm Generation

• LLMs generate optimization algorithms beyond acting as operators.

• Single-Round Generation:

• HybridMeta(Pluhacek et al., 2023): LLMs design hybrid metaheuristics by combining 
known methods.

• Optimus(AhmadiTeshnizi et al., 2023): LLMs automate MILP modeling, solving, and 
debugging.

• Iterative Evolution:

• Funsearch(Romera-Paredes et al., 2024): LLMs paired with evaluators to evolve interpretable 
programs solving combinatorial and algorithmic problems.

• EOH(Liu et al., 2024b): LLMs co-evolve heuristic ideas and code structures.

• Reevo(Ye et al., 2024): Reflective evolution enhances algorithm optimization via short-
and long-term feedback.

• More details in Topic III
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LLM Guided Evolutionary Optimization
• LLM-assisted Test Case Generation

• LLMs enhance test generation by combining code synthesis with evolutionary 
search.

• TitanFuzz(Deng et al., 2023) 

• Uses Codex (for seeds) and InCoder (for mutations).

• Fitness: dataflow depth, API diversity, repeated API penalties.

• CodaMOSA(Lemieux et al., 2023) 

• EA halts at coverage plateau.

• LLM generates tests for low-coverage functions.

• EA resumes with improved seeds.

• More details in Topic IV
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The Tutorial Organization
• Topic I: Evolutionary Optimization Based on Machine Learning

Prof. Xiaodong Li, IEEE Fellow, RMIT  University

• Topic II: Business Optimization and Problem Formulation 
Using Large Language Models

Prof. Yuan Sun, La Trobe University

• Topic III: Evolutionary Optimization Guided by Large Models

Huigeng Ye, Tsinghua University

• Topic IV: Test Case Generation Using Large Language Models

Prof. Yuan Yuan, Beihang University
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Evolutionary Optimization Enhanced by 
Machine Learning
Xiaodong Li, RMIT University, Melbourne, Victoria, Australia
Yuan Sun (Presenter), La Trobe University, Melbourne, Australia



Why machine learning can help?

• Traditional optimization often relies on handcrafted rules for decision-making.

• Minor variations in problems frequently require redeveloping algorithms.

• In many industries, similar instances are solved repeatedly, often from scratch.

• There is an abundance of data, e.g., historical operations data collected over time.

• Collecting optimal solutions for training is feasible due to advanced solvers.

• Machine learning and deep learning are mature, powerful, and widely accessible.

• 1
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Solution Prediction via Machine Learning: Training

• Solve a set of easy problem instances to optimality.

• Label decision variables using their optimal solution values.

• Extract features to characterize each decision variable.

• Train a machine learning model to predict optimal values for decision 
variables.
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Features
• A list of features that may be useful:

• Graph-based features: e.g., node weight, node degree, edge distance

• Mathematical features: e.g., objective bound (sum of weights of a node and 
its neighbors for maximum weighted clique problems)

• MIP formulation features: e.g., cost coefficients, number of non-zeros in the 
constraint matrix etc.

• LP relaxation features: e.g., reduced costs, optimal LP solution values

• Heuristic-based features: e.g., value-to-weight ratio in knapsack problems

• Statistical features from sample solutions: e.g., correlation between variable 
values and objective value, frequency of variable values in high-quality 
solutions (similar to Estimation of Distribution Algorithms or Ant Colony 
Optimization).
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Machine learning models

21

Using Pre-defined Features

• Logistic Regression

• Support Vector Machines 

• Deep Neural Networks

Automatically Learning Features

• Graph Neural Networks (GNNs): Leverage 
graph structure to learn node/edge-level 
representations

• Autoencoders: Learn compact, informative 
feature representations from raw inputs

• Transformers: Capture long-range 
dependencies, useful for sequences or sets



Solution Prediction via Machine Learning: Testing

22

➢Given a test problem instance, the trained machine learning model predicts 
the likelihood that each binary decision variable is part of the optimal 
solution (i.e., has a value of 1).

•Note: Any bounded integer variable can be represented as a set of binary variables, making 
this approach broadly applicable.



Constructing Solutions from ML Predictions

23

• Use predicted probabilities to greedily construct solutions, selecting at each 
step the variable most likely to be in the optimal solution.

• Expected to outperform hand-crafted heuristics, since such rules can 
be incorporated as features into the learning model.

• Can be combined with tree-based search methods (e.g., DFS) to prioritize 
high-quality regions of the solution space. (NeurIPS’18, IJCNN’21)(Li et al., 2018, 

Shen et al., 2021) 



Pruning the Search Space with ML Predictions

24

➢ Fix or remove decision variables that are unlikely to be part of the optimal 
solution. Specifically, variables with predicted probabilities below a 
threshold can be fixed to 0. (TPMAI’19, AAAI’19)(Sun et al., 2019, Lauri et al., 2019) 

➢Apply a search algorithm to find a solution in the resulting reduced problem 
space, enabling faster and more focused optimization.



Extensions of ML-Guided Pruning
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•Constraint-Based Pruning (AAAI 2020)(Ding et al., 2020) 

• Train a GNN to predict binary variable values in MIPs. Prune the search space via a global inequality 
constraint that limits deviation from the predicted solution.

•Generalization to Unseen Instances (OR Spectrum 2021)(Sun et al., 2021) 

• Train ML models on one category of instances and test across a variety of instances with different 
characteristics.

•Multi-Stage Pruning (Journal of Heuristics, 2023)(Lauri et al., 2023) 

• Apply the trained ML model recursively to prune the search space. Each stage trains a new classifier to 
progressively eliminate harder-to-prune elements.

•ML-Guided Column Generation (ICLR 2023)(Sun et al., 2022a) 

• Extend to problem formulations with exponentially many variables. Use the model to filter and select 
high-quality variables. 

•Reduce-Then-Optimize (Transportation Science, 2025)(Spieckermann et al., 2025) 

• Use a GNN to identify a relevant subset of variables in the Fixed-Charge Transportation Problem (FCTP), 
reducing problem size and boosting solver efficiency.



Sampling Solutions Based on ML Predictions
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At each step, the probability of selecting 
variable 𝑣𝑖  is:

𝑝𝑖 =
𝑦𝑖

σ𝑗∈𝑆 𝑦𝑗

where:

• 𝑦𝑖 is the ML prediction (likelihood of inclusion) for 𝑣𝑖

• 𝑆 is the set of feasible candidate variables that can be added to the solution.

Sampling solutions for the pricing problem in Column Generation (AAAI’22) (Shen et al., 

2022) 

• A diverse set of high-quality solutions is required — not just one optimal solution.

• Compared to traditional sampling, this approach yields better-quality columns;

• Compared to exact or heuristic methods, it generates more high-quality solutions. 

Heuristic rule
ML Prediction

Objective value of samples (larger → better)



Boosting ACO with ML Predictions
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Ant Colony Optimization (ACO) is a probabilistic 
algorithm that samples solutions using:

𝑝𝑖 =
𝜏𝑖𝜂𝑖

σ𝑗∈𝑆 𝜏𝑗𝜂𝑗

• 𝜼: is heuristic rule, 

• 𝝉: pheromone trial reflecting the “evolved” quality of solution 
components.

Typically, 𝝉 is initialized uniformly and 𝜼 is set based on 
domain-specific heuristic rules.

ML-Enhanced Variants of ACO (COR 2022)(Sun et al., 2022a) 

• SVM-ACO𝜂: Set 𝜂𝑖 = 𝑦𝑖 , where 𝑦𝑖 is the ML predicted probability;

• SVM-ACOτ: Initialize 𝜏𝑖 = 𝑦𝑖 using ML predictions;

• SVM-ACOෝη: Set the 𝜼 value as a combination of ML predictions 
and a heuristic rule



Extensions of ML-Enhanced ACO
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DeepACO (NeurIPS’23)(Ye et al., 2023) 

• Use deep reinforcement learning to learn heuristic measures and is evaluated on eight combinatorial 
optimization problems.

LN-ACO (GECCO’23)(Liu et al., 2023) 

• Use an “intelligent ant” with a pre-trained GNN to predict variable selection probabilities, forming a 
hybrid colony with traditional ants to guide the search process.

DLQ-ACO (GECCO’23)(Ramírez et al., 2023) 

• Use GNN to generate variable selection probabilities and Q-learning to decide during solution 
construction whether to use ML-derived probabilities or traditional ACO heuristics.

ML-ACO for Column Generation (GECCO’24)(Xu et al., 2024) 

• Incorporate ML predictions into the heuristic measures of ACO to efficiently generate multiple diverse, 
high-quality solutions for Column Generation. 

GFACS (AISTATS’25)(Kim et al., 2025) 

• Uses Generative Flow Networks to learn a multi-modal prior distribution to set the heuristic matrix for 
ACO, evaluated on seven combinatorial optimization problems.



Adaptive Solution Prediction via Machine Learning
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• Limitations of Offline-Trained ML Models: Accuracy is often limited by

• Static, one-shot predictions that do not adapt during the search process.

• Challenges in crafting features that effectively represent decision variables.

• Distribution shift between training and testing instances.

• Adaptive Solution Prediction (ASP) (EJOR 2023)(Shen et al., 2023) 

• Refines ML predictions iteratively during the search on a problem instance.

• Incorporates feedback from search to progressively enhance prediction.

• Use statistical features extracted from sampled solutions to update predictions over time. 

• Examples of statistical features include: 

• Correlation between variable values and objective value

• Frequency of variables used in high-quality solutions (e.g., pheromone update in ACO)

• As the search generates better solutions, statistical features evolve, leading to more informed 
and accurate predictions.



Adaptive Solution Prediction via Machine Learning
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Relationship Between ASP and EDAs
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Similarities
• Both sample the solution space of a specific instance.
• Both update a probability distribution to guide toward 

better solutions.
• Both exhibit online learning through iterative 

refinement.
Differences

• ASP uses an offline-trained ML model with knowledge 
from historical instances; 

• EDAs (Estimation of Distribution Algorithms) 
typically learn from scratch during each run.

• ASP generalizes EDAs:
-For example, ACO updates probabilistic mode 
(pheromone) using fixed rules.
-ASP builds its prediction model from data using 
multiple features (can include ACO-style rules).

Figure: EDA builds and sample an explicit probabilistic 
model from a pool of promising candidate solutions 
(source: Wikipedia).



Relationship Between ASP and ML-ACO
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Similarities
• Both integrate machine learning into metaheuristic search for combinatorial optimization.
• Both use ML predictions to guide solution construction or sampling.
• Both allow for adaptive behavior during problem-solving.

Differences

Aspect ML-ACO ASP

Integration 
Point

Injects ML into ACO components (pheromone, 
heuristic)

Predicts variable values to 
guide solution construction

Adaptivity Often static once ML predictions are embedded
Dynamically refined using 
feedback from ongoing 
search

Learning 
Mode

Uses ML to improve ACO's components offline
Uses offline ML + online 
statistical adaptation

Generalization Enhances specific ACO variants (e.g., SVM-ACO)
General 
framework applicable 
beyond ACO



Challenges and Future Directions
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• Key Challenges

• Generalization Across Problems: Building ML models that work across a class of problems or broader 
MILP remains difficult.

• Feasibility & Guarantees: ML predictions may violate constraints or yield infeasible solutions; 
providing optimality gap guarantee is challenging.

• Refining Predictions: Most ML models produce static, one-shot predictions. Online refinement and 
instance-specific adaptation are underexplored.

• Future Directions

• Expanding to Other Algorithms & Problems: Apply ML to enhance e.g., PSO, GA, or handle dynamic 
and multi-objective optimization problems.

• Cross-Domain Generalization: Develop generic ML models using meta-learning, instance-space 
analysis, or domain-agnostic feature representations.

• Adaptive Learning: Move beyond ASP to integrate feedback (and possibly re-training) during search 
for better adaptability and ML predictions.

• Exploring New ML Paradigms: Leverage LLMs for heuristic code generation and MILP model 
formulation (see next sections).
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Two PhD Scholarships Available
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•Research Area

• Enhancing Combinatorial Optimisation with Machine Learning

•Scholarship Details

• Stipend: AUD $35,886 per annum (tax-free)

• Duration: 3.5 years

• Tuition: Full tuition fee waiver

• Location: RMIT University (Collaborate with Monash & La Trobe), Melbourne

•Contact:
Prof Xiaodong Li – xiaodong.li@rmit.edu.au
Dr Yuan Sun – yuan.sun@latrobe.edu.au



Business Optimization and Problem Formulation 
Using Large Language Models
Yuan Sun, La Trobe University, Melbourne, Australia



Business Optimization
Using mathematical models and analytical techniques to enhance decision-
making, improve efficiency, reduce costs, and maximize profitability for a 
business. 

Typical Business Optimization Problems:

➢ Supply Chain Optimization

➢ Job Shop Scheduling

➢ Inventory Management

➢ Vehicle Routing Problem

➢ Production Planning

➢ Portfolio Optimization

➢ Staff Scheduling
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Example
➢ I am a retailer selling laptops. 

➢ Currently, there are 1015 laptops in the store. 

➢ Each laptop in inventory incurs a cost of $1.0 per 
week. 

➢ The forecast demand for laptops at the store in 
the next 8 weeks are {…}. 

➢ Ordering laptops incurs a fixed cost of $2000 per 
order with up to 6000 laptops. 

➢ What is the best plan to order laptops for the next 
8 weeks to minimise the inventory and logistic 
costs while satisfying demand?
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Challenges
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• Requires expert knowledge to 
translate natural language into 
solvable models

• Experts must have strong 
programming skills

• Interpretation of results and 
turning them into business 
actions is non-trivial

➢ Expertise is scarce, expensive, and often specialized to one technique.

➢ Optimization process is time-consuming even for skilled professionals.

Traditional way of applying optimization to solve business problems:



Automating Problem Formulation Using LLMs
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Aim to use LLMs to automatically 
convert natural language 
descriptions of business problems 
into:

• Mathematical models

• Computer programs

This automation reduces reliance on 
expert knowledge and speeds up 
the optimization process (Ramamonjison

et al., 2022) 



Early Efforts and Examples

Academic:

• Stanford University

• University of Cambridge

• Zhejiang University

• Chinese University of Hong 
Kong

Industry:

• Huawei

• Gurobi

• Alibaba

• Microsoft
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Method Overview

Prompt-Based Techniques

• Use carefully crafted prompts to guide LLMs in translating natural language into 
optimization models.

Prompt Optimization

• Iteratively refine prompts based on model output and feedback to improve formulation 
accuracy.

Fine-Tuning Approaches

• Train LLMs on domain-specific datasets (fully or efficiently) to enhance performance and 
consistency.

Workflow Architectures

• Structure the problem-solving process using single-agent or multi-agent systems for 
modular reasoning.

Retrieval-Augmented Generation (RAG)

• Dynamically fetch and insert relevant past examples or context to improve task relevance 
and accuracy. 42



Zero-Shot Prompting

Use a LLM to formulate an optimization model 
from natural language with no examples(Ahmed et 
al., 2024)

Strengths:

• Easy to use and implement

• No labelled data or fine-tuning

• Compatible with commercial LLMs

Limitations:

• Accuracy may drop on complex tasks

• Highly sensitive to prompt phrasing
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Formulate this problem as a MIP model:
I am a retailer selling laptops. Currently, 
there are 1015 laptops in the store. Each 
laptop in inventory incurs a cost of $1.0 
per week…

Here’s a MIP formulation for the problem:



Prompt Optimization

Notable Methods:
• OPRO(Yang et al., 2024) – Large Language 

Models as Optimizers: Uses LLMs to 
propose and refine prompts iteratively 
based on performance feedback.

• EvoPrompt(Guo et al., 2024) – LLMs + 
Evolutionary Algorithms: Applies 
evolutionary search to discover high-
performing prompts through 
generations.
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➢ The process of automatically improving prompts to maximize LLM performance 
on a task.

➢ Altering the wording or structure of prompts to better align with model 
expectations.

Benefit:
Automates the search for high-quality 
prompts. 



Example

Few-Shot Prompting
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Q: A bakery makes two items: bread and 
cake. Bread takes 1 hour to bake and 
cake takes 2 hours. The oven is available 
for 40 hours per week. Bread earns $4 
profit, and cake earns $7. Formulate an 
integer linear programming model to 
maximize profit.

A: max  4B + 7C
s.t. B + 2C ≤ 40

B, C ∈ ℕ₀

Q: A company produces products A and 
B. Each A requires 2 hours of labor, each 
B requires 1 hour. With 100 total labor
hours available and profits of $30 for A 
and $20 for B, formulate a MIP model to 
maximize profit.

Few-Shot Prompt

➢ LLM is shown a few examples of input-output 
pairs before being asked to solve a new task.

➢ Demonstrates how a problem description 
maps to formulation.

Benefits:

• Enables LLMs to learn task patterns

• Potentially more accurate than zero-shot 
prompting

Limitations:

• Limited by prompt token length (can only 
include a few examples)

• Performance highly depends on quality and 
diversity of examples

New Task



Retrieval-Augmented Generation (RAG)

➢ Enhances LLMs by retrieving 
relevant documents and 
inserting them into prompts.

➢ Helps handle complex or 
domain-specific tasks with 
limited LLM internal 
knowledge.
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DRoC (Decomposed Retrieval of Constraints)(Jiang et al., 2025a) :

• Decomposes complex optimization problems into individual constraints.

• Retrieves relevant documentation/code for each constraint.

• Merges retrieved content to assist LLMs in generating accurate solver-
compatible programs.



Final model:
max  4B + 7C
s.t. B + 2C ≤ 40

B, C ∈ ℕ₀

Example
Q: A bakery makes two items: bread and cake. Bread takes 1 hour to bake and cake 
takes 2 hours. The oven is available for 40 hours per week. Bread earns $4 profit, and 
cake earns $7. Formulate an integer linear programming model to maximize profit.

A: 1) Let B = number of bread loaves, C = number of cakes.                
2) These must be non-negative integers.
3) Objective: Maximize profit → 4B + 7C
4) Constraint: Bread takes 1 hour, cake takes 2 → B + 2C ≤ 40

Q: A company produces products A and B. Each A requires 2 hours of labor, each B 
requires 1 hour. With 100 total labor hours available and profits of $30 for A and $20 
for B, formulate a MIP model to maximize profit.

Chain-of-Thought Prompt

Chain-of-Thought Prompting

Encourages LLMs to reason step-by-step before generating the final formulation(Wei et al., 2022) 

Mimics human thought processes by decomposing complex tasks into logical steps
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New Task



Single-Agent Workflow

➢ A single LLM agent is used to handle the 
entire problem formulation task in a modular, 
step-by-step manner.

➢ The LLM is prompted to sequentially 
complete subtasks: extract variables, define 
objective, write constraints, and generate 
code.

➢ More scalable for long problems due to 
reduced context length

➢ Compatible with prompt-based or fine-
tuned models

48



Multi-Agent Workflow

➢ Inspired by expert collaboration and chain-of-responsibility paradigms.

➢ Multiple LLMs or role-specialized agents collaborate in a structured 
workflow to perform different subtasks in problem formulation.

➢ Roles may include: Conductor (Coordinator), Interpreter, Formulator, 
Programmer, and Validator.

Advantages:

• Improved performance via task specialization

• Easier to debug or refine each step/agent

Limitations:

• Higher complexity and resource-intensive (compute, cost, latency)

• Requires careful design of communication between agents
49



Multi-Agent Workflow Example

Chain-of-Experts (CoE)(Xiao et al., 2024) 

• A central Conductor coordinates specialized LLM agents (e.g., Interpreter, Modeler, Programmer).

• Agents collaborate iteratively to analyze, formulate, and verify optimization models.

• Combines forward reasoning (expert-driven modeling) with backward reflection (feedback-based 
revision).

50



OptiMUS(AhmadiTeshnizi et al., 2024) 

• Manager: Oversees the workflow and coordinates agent interaction.

• Preprocessor: Extracts variables, objectives, and constraints from text.

• Formulator: Converts each clause into formal math (e.g., LaTeX).

• Programmer: Generates and debugs solver code.

• Evaluator: Runs code and checks for correctness.
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Multi-Agent Workflow Example



Agentic Workflow Optimisation

➢ Traditional multi-agent LLM workflows require manual design of agent roles and 
communication strategies.

➢ Agentic workflow optimisation aims to automatically generate and refine multi-agent 
workflows for complex tasks like problem formulation.

➢ Enhances scalability, adaptability, and performance without hand-engineered pipelines.
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AFLOW(Zhang et al., 2025): Automating 
Agentic Workflow   Generation
• Represents workflows as graphs of 

modular, reusable LLM-invoking 
nodes.

• Uses Monte Carlo Tree Search 
(MCTS) to explore and optimize 
workflows.



Fine-Tuning

➢ Refers to training a pre-trained 
language model on a specific 
dataset of input-output pairs.

➢ Input: problem description

➢ Output: formulation & code

53

Strengths
• Improves performance on domain-specific or complex tasks
• More reliable and consistent than prompt-only methods

Limitations
• Requires labelled datasets (e.g., NL + LP/MIP pairs)
• Computationally expensive and time-consuming



Fine-Tuning Examples

Full Fine-Tuning: Updates all model parameters on domain-specific data

Efficient Fine-Tuning: Updates a subset of parameters or adds lightweight modules:

➢ LoRA(Hu et al., 2022) – Low-rank adaptation to attention weights

➢ Adapters – Trainable modules inserted into the transformer stack

Recent Efforts

➢ LM4OPT(Ahmed et al., 2024): Fine-tunes LLaMA-2-7B to convert natural language into 
optimization models using the NL4Opt dataset.

➢ OptLLM(Zhang et al., 2024): Trains Qwen-based agents with multi-turn interaction and solver 
feedback for optimization modeling.

➢ ORLM(Huang et al., 2024): Fine-tunes several open-source 7B-scale LLMs using the open-instruct 
framework and OR-Instruct data.

➢ LMBO(Amarasinghe et al., 2023): Applies full fine-tuning to real-world production scheduling, 
demonstrating improved task performance and code generation.

➢ LLMOPT(Jiang et al., 2025b): Combines structured five-part representations with supervised fine-
tuning for general-purpose optimization modeling. 54



Benchmark Datasets

Evaluate the capability and accuracy of LLMs in formulating optimization models

Support fine-tuning and instruction alignment for task specialization

Existing Benchmark Datasets:

• NL4Opt(Ramamonjison et al., 2023): 1101 annotated LP problems across 6 domains and tasks. 

• Mamo(Huang et al., 2025): 863 MILP problem instances (652 Easy, 211 Complex)

• NLP4LP(AhmadiTeshnizi et al., 2024): 65 textbook-sourced LP and MILP instances

• ComplexOR(Xiao et al., 2024): 37 expert-annotated OR problems from diverse real-world sources

• IndustryOR(Huang et al., 2024): 100 real-world OR problems, 5 types, 3 difficulty levels

• OPTIBENCH(Yang et al., 2025): 605 verified problems covering LP, NLP, MIP, and tabular data

• Sched(Amarasinghe et al., 2023): Two scheduling datasets with 1,700 instances via modular expansion.
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Synthetic Datasets 

Motivation

➢ Lack of large-scale, high-quality labelled datasets for optimization tasks.

➢ Manual annotation is expensive, time-consuming, and requires domain expertise.

Synthetic Dataset & Approach

➢ LLMOPT(Jiang et al., 2025b): augments 1,763 seed problems using diverse instruction templates 
via GPT-4, followed by expert filtering and detailed labeling.

➢ OR-Instruct(Huang et al., 2024): Generated by expanding 686 seed cases using GPT-4, structured 
prompts, augmentation (e.g., rephrasing, constraint variation), and human filtering to ensure 
correctness.

➢ RESOCRATIC-29K(Yang et al., 2025): Generated by reverse-constructing optimization problems 
from formulations, then translating and filtering them for correctness and diversity. 
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Challenges and Future Directions

Challenges

➢ Ambiguity and missing details in natural language descriptions

➢ Vast and diverse space of business optimization problem types

➢ Limited availability of high-quality, labeled datasets for training and evaluation

➢ Prompt sensitivity, hallucination, and generation of solver-incompatible models

➢ High cost and complexity of running or accessing large language models

Future Directions

➢ Scalable synthetic data generation (e.g., ReSocratic) for robust training

➢ Enriched benchmarks covering various real-world business optimization tasks

➢ Enhanced prompt optimization and retrieval-augmented generation methods

➢ Agentic workflow automation (e.g., AFLOW) for multi-agent coordination

➢ Integration of validation tools and solver feedback for self-debugging

➢ Development of cost-efficient LLMs with strong optimization performance 57
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Large Models
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Background
• Rapid Progress of Large Models

• LLM capabilities have accelerated rapidly

• Complex tasks are now within reach
• “Impossible” problems are becoming solvable

60
(a) Breakthroughs on AI benchmarks from 2020 to 2025(Yao et al., 2025) 



Background

61(a) Categorization of research works on the integration of LLMs and Evolutionary Algorithms (EAs) (Wu et al., 

2024) 

 LLMs for optimization solving

LLMs for instance constraint repair

• How LLMs Enhance Evolutionary Algorithms
• LLMs for optimization solving

• Black-box optimization

• Algorithm generation

• LLMs for repairing infeasible optimization models



Background
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• How LLMs Enhance Evolutionary Algorithms
• Black-box Optimization

• LLM acts as a solver via dialogue

• Or serves as a search operator
• Easy to use, but limited by context & reasoning

• Only suitable for small-scale problems

• Algorithm Generation

• LLM generates optimization algorithms

• Algorithms are shorter than full problem inputs
• Leverages LLM's code generation strength

• Scalable to large-scale problems

(a) Two main LLM-enhanced EA approaches for optimization solving(Wu et al., 2024) 

Small-scale optimization problem

 Large-scale optimization problem



Basic Method
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• How EA Combines with LLM to Generate Optimization Code
• Whole-code Evolution

• Directly evolve entire heuristic codes

• Different paradigms may mix (e.g. Genetic Algorithm + Feasibility Pump)
• Easy to use, but limited by context & reasoning

• Often unstable due to incompatible structures

• Operator-level Evolution
• Fix a high-quality heuristic framework (e.g. Large Neighborhood Search)

• Use EA + LLM to evolve key operators (e.g. neighborhood selection)
• More stable and effective

(a) Evolve the entire heuristic algorithm (b) Evolve a component (e.g. operator)



Basic Method
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• Practical Workflow of EA + LLM for Code Evolution
• Select Target

• Decide which operator to evolve (e.g., neighborhood selection)

• Define its input and output interfaces

• Initialize Population
• Collect existing implementation strategies

• Or generate initial candidates via LLM using interface descriptions

• Parent Selection
• Use standard EA techniques (e.g., tournament, roulette wheel)
• Or let LLM define custom selection rules

Population

LLM Offspring Fitness

Gate Unit

Operator

(a) EA + LLM workflow for evolving heuristic operators



Basic Method
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• Practical Workflow of EA + LLM for Code Evolution
• Generate Offspring

• Use LLM as a crossover/mutation operator

• Input parent code, output new candidate strategy

• Evaluate and Filter
• Run offspring on tasks to compute fitness

• Gate unit decides whether to keep, replace, or discard based on performance

• Eventually, you obtain an efficient, evolved operator 

Population

LLM Offspring Fitness

Gate Unit

Operator

(a) EA + LLM workflow for evolving heuristic operators



Basic Method
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• How to Use LLMs as Black-box Optimizers via API
• Key Idea

• We use the LLM as a black-box optimizer

• Just send the parent strategy + prompt to the API
• and extract new offspring code from the response 

• Example
• Using the OpenAI API (https://platform.openai.com/docs/overview)
•

Population

Offspring Fitness

Gate Unit

(a) Parent code + prompt → GPT → New offspring code

https://platform.openai.com/docs/overview


Advanced Method
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• [Nature] Mathematical discoveries from program search with 
large language models(Romera-Paredes et al., 2024) 

• Ranked Prompting for Evolution
• Show 3 programs: A > B > C

• → LLM learns what "better" looks like

• Island Model
• Independent evolution of subgroups

• → Encourages diversity, avoids local optima

(a) FunSearch framework[3]

(b) Evolutionary Method with Island Model(Romera-Paredes et al., 2024) 



Advanced Method
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• [ICML2024 Oral] Evolution of Heuristics: Towards Efficient 
Automatic Algorithm Design Using Large Language Model
(Liu et al., 2024) 

•  Key Innovation: Co-evolution of Code and Thought

• Before-Most prior work (e.g., FunSearch) evolves code only

• EOH's Idea-Evolve both:

• Natural language description ("thought"): 
summarizes the high-level idea

• Code: implements the details

• Benefit

• → Thought helps understanding and 
generalization

• → Code offers executable precision

(a) EOH framework(Liu et al., 2024) 



Advanced Method
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• [ICML2024 Oral] Evolution of Heuristics: Towards Efficient 
Automatic Algorithm Design Using Large Language Model
(Liu et al., 2024) 

• Prompts’ Key Idea:
• Use LLM as an evolutionary operator with carefully designed prompt 

strategies→ Mimic how humans generate new ideas

• Two Categories of Prompts:
• Exploration (E-series)

• E1 – "Create something new”

• E2 – "Same idea, new form”

• Modification (M-series)
• M1 – Improve it

• M2 – Tune it

• M3 – Simplify it

(a) EOH framework(Liu et al., 2024) 



Advanced Method
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• [ICML2025 Spotlight] Large Language Model-driven Large 
Neighborhood Search for Large-Scale MILP Problems(Ye et al., 
2025) 

• Problem in Prior Work
• Prompt strategies are fixed or handcrafted

• Evolution only happens at the strategy level
• Leads to:

• Limited diversity in generated heuristics

• Easy stagnation in local optima

• Key Innovation
• Dual-layer Self-evolutionary Structure

(a) Dual-layer evolution

Layer What It Evolves Goal

 Outer Layer Prompt strategies (how LLM evolves) Exploration / Diversity

 Inner Layer Heuristic strategies (code + thought) Exploitation / Convergence

(b) Functional roles of the two layers in the self-evolutionary LLM agent



Advanced Method
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• [ICML2025 Spotlight] Large Language Model-driven Large 
Neighborhood Search for Large-Scale MILP Problems (Ye et al., 2025) 

• Problem in Prior Work
• LLMs don’t know which direction to evolve
• Because previous generations only give them:

• Few examples

• No clear contrast between good and bad → Evolution is blind and directionless

• Key Innovation
• Inspired by-Large Language Models as Optimizers(Yang et al., 2024) 

• LLMs can optimize without gradients just by seeing solution + score pairs and reasoning 
over natural language

• Differential Memory for Directional Evolution
• Provide the LLM with:

• Multiple strategies + both their scores and ranks

• Natural language thoughts

• → So it can learn from differences and evolve better offspring strategies



Advanced Method
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• [ICML2025 Spotlight] Large Language Model-driven Large 
Neighborhood Search for Large-Scale MILP Problems (Ye et al., 2025) 

(a) Evolution of Dual-layer Self-evolutionary LLM Agent for online bin packing (Ye et al., 

2025) 



Advanced Method
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• [ICML2025 Spotlight] Large Language Model-driven Large 
Neighborhood Search for Large-Scale MILP Problems (Ye et al., 2025) 

(a) Evolutionary Progress of Heuristic 
Strategies in Online Bin Packing

(b) Heuristic Designed by Dual-layer Self-evolution LLM Agent



Future Directions

74

• Multimodal Optimization with LLMs
• Combine problem modeling and solution generation using multimodal inputs 

(e.g., text + code)

• Enable end-to-end optimization pipelines via LLMs' multimodal understanding

• Improving Diversity and Generalization
• Introduce continual learning mutation operators to adapt to changing problem 

spaces

• Use performance-based feedback to evolve more effective mutation strategies

• Modular Code Generation for Complex Logic
• Decompose complex logic into modular sub-tasks for better generation

• Use interactive interfaces to guide LLMs and EAs in coordinated code generation
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Introduction & Motivation

Text-to-Testcase Generation

• Converts natural-language 

problem descriptions into 

executable test code

• Input: Problem description, 

target function definition

• Output: Test cases that can be 

used to evaluate programs

79
Fig. 1 Illustration of the process of text-to-

testcase generation.



Introduction & Motivation

Key Features (Text-to-Testcase Generation)

• No Reference Program: Infer expected behavior solely from 

natural-language descriptions, without a ground-truth program to 

validate against

• Risk of Incorrect Test Cases: LLMs may hallucinate or misinterpret the 

specification

• Beyond Traditional Rule-Based Methods: Rule-driven approaches 

cannot easily scale to arbitrary problem descriptions

• Need for Semantic Understanding: Generating valid tests requires deep 

comprehension of requirements
80



Introduction & Motivation

Why Automatic Text-to-TestCase Generation Matters

• Test cases are critical for ensuring code quality and reliability

• Manual test writing is time-consuming, LLMs offer promise but often 

produce incorrect tests
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Requires a lot of manual work

Easy and fast, but may contain errors



Introduction & Motivation

• Key Challenge

• LLMs need to predict the correct expected test output, which is difficult 

when the reference program is available

• Main Contributions

• A multi-agent framework: TestChain

• Code-Assisted Reasoning to eliminates LLM hallucinations and input-

output mismatches
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Background & Prior Work

• Traditional Approaches

• Rule-based or template methods lack flexibility

• LLM-Based Approaches

• CodeT(Chen et al., 2022a) / Reflexion(Shinn et al., 2023): Generate tests from 

prompts, but ignore correctness

• Pytester-770M(Takerngsaksiri et al., 2025): RL-trained, still prone to copying 

patterns or missing edge cases
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TestChain Framework

• Framework Overview

• Core Idea: Factorize generation into two specialized agents

• Pipeline FLow: Prompt → 2. Designer → {Candidate Inputs} → 3. 

Reasoning → {Final Test Cases}

84

Fig.2 Illustration of the TestChain framework.



TestChain Framework

• Designer Agent

• Task: Generate diverse, representative test inputs

• Prompt Template (Example): 
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You are a Python tester. Your task is to generate a comprehensive set of test inputs for 
the given function signature and problem description. 
The generated test inputs should cover all requirements, edge cases, exceptional 
scenarios, and satisfy the constraints specified in the problem description. 
Write each test input in a single line and start with a `input:` prefix, and write as many 
test inputs as possible. Put your answer in a text block, for example:
```text
# test inputs here
```



TestChain Framework

• Reasoning Agent

• Task: For each input tuple, compute the correct output step-by-step

• Two-Phase Strategy:

1. Decomposition: LLM generates natural-language reasoning steps (e.g., “Sort array, 

find median, count subarrays”).

2. Code-Assisted Execution: Alternate between reasoning and code-execution 
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TestChain Framework

• Code-Assisted Flow (Reasoning 

Agent)

• LLM writes small Python snippets to 

carry out sub-computations

• Snippets are executed in a live 

interpreter,  actual numeric results are 

fed back

• Final output is computed based on 

verified intermediate values

87Fig.3 Illustration of an end-to-end example.

Function and Docstring
from typing import List
def countSubarrays(nums: List[int], k: int) -> int:

"""
You are given an array `nums` of size `n` consisting of distinct 

integers from `1` to `n` and a positive integer `k`. Return the number 
of non-empty subarrays in `nums` that have a median equal to `k`.

"""

Test Input
[1, 3, 2, 5, 4]

TestChain: Reasoning Agent

nums = [1, 3, 2, 5, 4]
subarrays = []
n = len(nums)
for start in range(n):

for end in range(start + 1, n + 
1):

subarrays.append(num
s[start:end])
subarrays

def find_median(subarray):
subarray.sort()
length = len(subarray)
if length % 2 == 1:

return subarray[length // 2]
else:

return subarray[(length // 2) - 1]
k = 4
count = 0
for subarray in subarrays:

if find_median(subarray) == k:
count += 1

count

Now that I have all possible subarrays, I need to calculate 
the median for each subarray and check if it equals `k`. I 
will write code to find the median of each subarray and count 
those with a median equal to `4`.

Out[1]: [[1], [1, 
3], [1, 3, 2], [1, 
3, 2, 5], [1, 3, 2, 

5, 4], [3], [3, 2], 
[3, 2, 5], [3, 2, 5, 
4], [2], [2, 5], [2, 
5, 4], [5], [5, 4], 
[4]]

To solve this problem, I need to ...

First, I need to generate all possible subarrays of the given 
array. I will write Python code to generate these subarrays.

Out[1]: 3

assert countSubarrays([1, 3, 2, 5, 4], 4) == 3

LLM

LLM

LLM

LLM

LLM



Experiments

• Experimental Procedure

• Test case types

1. Correct (Acc.): Validates correct behavior 

without errors

2. Duplicate (Dup.): Repeats previous checks

3. Syntactically Incorrect (Syn.): Fails to parse 

due to syntax errors

4. Input-Output MisMatch (Mis.): Asserts 

wrong output for given input

5. Other Error (Oth.): Causes unexpected 

runtime exceptions

88
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Experiments

• Datasets

• HumanEval(Chen et al., 2021) (Simple Functions), LeetCode-Hard(Shinn et al., 

2023) (Complex Functions)

• Baselines

• Pytester-770M

• CodeT-TG: Test case generation module of CodeT

• Reflexion-TG: Test case genertion module of Reflexion

• LLMs

• Qwen2.5-7B, 14B, 32B, DeepSeek-V2.5, GPT-4o
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Experiments

• RQ1: Test Case Accuracy

• Acc.: Outperform baselines 

across all LLMs and datasets

• Mis.: Drops significantly

• Syn. & Dup. & Oth.: Rates 

remain low

TestChain generates more 

correct test cases than baselines.
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Experiments

• RQ2: Test Case Effectiveness

• Two metrics

• Error Program Discrimination (Dis.): The 

percentage of error programs detected 

(Similar to mutation testing)

• Line Coverage (Cov.): Covered lines / 

Total lines

• Experimental Results

• TestChain achieved the highest Dis. and 

Cov. in most cases

TestChain produces test cases that 

better catch faulty programs and 

execute more code.
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Experiments

• RQ3: Improving Code Generation

• Case 1: Evaluate and selection based 

methods, generate 50 programs

• Sampling, Sampling+Filtering(Li et al., 2022), 

CodeT(Chen et al., 2022b) 

• Case 2: Repair-based methods

• Sampling: Generate 5 programs

• Reflexion(Shinn et al., 2023): Generate 1 program 

and fix 4 times

TestChain improves performance of code generation 

methods.
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Experiments

• RQ4: Ablation Study on Code-Assisted 

Flow

• Two variants

• R: Reasoning process.

• I: Code interpreter interaction process.

• Experimental Results

• Full Setup (+R, +I) achieves the best 

performance

Confirms that both the reasoning process and 

code interpreter interaction process are 

essential. The combination is key.
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Discussion

• Current Limitations

• Language Scope: Only Python, function-level

• Compute Overhead: Interpreter calls increase latency in large-scale pipelines

• Future Directions

• Multi-Language Extension: Java, C++, Go

• Prompt Optimization: Automated prompt tuning

• Hierarchical Test Suites: Generate not only function tests but also integration 

and system-level tests
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Thanks

Any Question?
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