Intelligent Evolution Optimization:
Guided from Deep Learning to
Large Language Model

Hua Xu, Xiaodong Li, Yuan Sun, Huigen Ye
http://gecco-2025.sigevo.org/

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. Copyrights for third-party components of this work must be honored. For
all other uses, contact the owner/author(s).

To be updated after completing copyright process
GECCO '25 Companion, July 14 - 18, 2025, Malaga, Spain
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1464-1/2025/07.
https://doi.org/10.1145/3712255.3716522

Instructors

Hua Xu is a tenured Associate Professor in the Department of
Computer Science at Tsinghua University. His research explores
intelligent optimization and human-machine interaction in Al. He
has published extensively in top venues, authored influential
books such as Intelligent Evolutionary Optimization (Elsevier,
2024), and holds numerous patents. His work has received major
honors including the National Science and Technology Progress
Award and the Beijing Science and Technology Award, and he
currently serves as Editor-in-Chief of Intelligent Systems with
Applications.

Xiaodong Li is a Professor in the School of Computing
Technologies at RMIT University, Melbourne. His research spans
machine learning, evolutionary computation, swarm intelligence,
and multiobjective optimization. He has served as Associate Editor
for leading journals such as IEEE Transactions on Evolutionary
Computation and Swarm Intelligence. A recipient of the ACM
SIGEVO Impact Award and an IEEE Fellow, he has contributed
extensively to the field through both research and leadership in
IEEE CIS Task Forces.

Instructors

Yuan Sun is a Lecturer in Business Analytics and Artificial
Intelligence at La Trobe University, Australia. He received his BSc in
Applied Mathematics from Peking University, China, and his PhD in
Computer Science from The University of Melbourne, Australia.
His research interests include artificial intelligence, machine
learning, operations research, and evolutionary computation. His
research has contributed significantly to the emerging area of
leveraging machine learning for combinatorial optimisation. He is
the vice-chair of the IEEE task force on large-scale global
optimisation and has organised special sessions and workshops,
and delivered tutorials at the GECCO, PPSN, and CEC conferences.

Huigen Ye is a Ph.D. student at Tsinghua University, focusing on
applying machine learning to accelerate large-scale optimization,
particularly in mixed-integer programming. He has published
papers in top conferences such as ICML, ICLR and AAAI. He is
actively involved in academic service, serving as a reviewer for
conferences like AISTATS, NeurlPS and ICLR.

Overview: Intelligent Evolution
Optimization - Guided from Deep

Learning to Large Language Models
Hua Xu

Tsinghua University,
Beijing, P. R. China

Contents

* Background

 Machine Learning Guided Evolutionary Optimization
 LLM Guided Evolutionary Optimization

* The Tutorial Organization

Background

* Several Optimization Cases
* 3D IC Partitioning Problem(Meitei etal., 2020)
* Pickup and Delivery Problem with Time Windows (Pumasetal., 1951)
* Supply Chain Management Problem(Vi!l2, 2001)

* Problem Definition
 Definition:

min f(x)
reX
subject to g;(z) <0, i=1,...,m,
P
Heat sink
Stacked die
Er ion
TSV cell \<|: /Ber:i
Landing pad
TSVthrolugh) % Berz
(bonding eyen) "f\;(|
:_ — E’em
OOO0O0000
[Bulk silicon (substate wafer) |
(a) IC Partitioning Problem (b) Pickup and Delivery Problem (c) Supply Chain Management

(0]

Background
 Traditional Mathematical and Exact Methods

Convex Optimization Techniques: Gradient Descent(Amaris, 1993),
Newton's Method(Kelley, 2003)

Solver: SC|p (Achterberg, 2009) |pQPT (Biegleretal. 2009) Grobij (Pedroso
2011) CPLEX (Bliek1u et al., 2014)

Academic Progress: Advanced Branch-and-Bound Techniques
(Morrison et al., 2016) Cutting Plane Methods (Dey et al., 2018)

* Challenges

(a) Branch-and-Bound Techniques

Problem: NP-hardness & High dimensionality

G RO CPLEX

Solving Constraint Integer Programs

(b) Solvers

Background
 Traditional Heuristics Method

* Large Neighborhood Search(LNS) (song etal., 2020)
« Adaptive Constraint Partition(Ye etal., 2023)

* Evolution Optimization Method - ¢t 2l 2023)

* Generator — Evolution to Explore New Solutions
e Evaluator — Assess Fitness of Solutions

e Discriminator — Select the Best Solutions

* Next Generation

Parent
Population

Selection

, 1
Generator @
Filtered
Evaluator Solutions
N Offspring

Population

Elites

Discriminator

_>

Reproduce a novel population to approximate
the unknown optima

(a) Large Neighborhood Search (b) Evolution Optimization Method

Background

* Advantage
e Flexible and Effective Search Operators
* Good Scalability for Problems

* Parallelizable Population-based Search
* Challenges
 Heavy Dependence on Careful Parameter Tuning

e Reliance on Expert-designed Operators

 Cold Start Issues and Slow Adaptation for New Problems

(a) Expert-designed Operators (b) Cold Start Issues

Machine Learning Guided Evolutionary Optimization

 Evolutionary processes assisted by machine learning!-'v et 2l 2023)
* Evolutionary Generator
* Evolutionary Evaluator
* Learnable Evolutionary Discriminator

* More details in Topic |
— Find promising solutions

Parents (L&rnable +

evolutionary .
search

\Oﬁ‘spring —
Simulation Surrogate
data II model

R \ ") \L Y =F(x) JTminmg Y ~F(x) J
~

(a) Evolutionary Generator T /

= =)
p)
K.
v
ﬁ

(b) Evolutionary Evaluator

Filter poorly performed solutions New

? "¢ /" Learnable parents
- g | evolutionary *
> ¢ m) selectlczr‘l. *
t i * ,‘..0* |
g e .- ¢
o ry 2\ Whopeees
N O

. . 10
Machine Learning (c) Learnable Evolutionary Discriminator

Machine Learning Guided Evolutionary Optimization

* Challenge
* Lack of diverse, large-scale training data for evolutionary learning

* Current benchmarks are too small, simple, and fail to reflect real-
world complexity

* Traditional deep learning models are task-specific and require
heavy retraining for each new optimization problem

e What we need to do?
e Automated Data Generator!Yangetal., 2024)
e Comprehensive Benchmark Test Suite('e et al., 2025a)

* Large Language Models (LLMs) to generalize
and automate

LLM Guided Evolutionary Optimization

* Evolutionary processes assisted by LLM

Evolutionary Computation in the Era of
Large L¢ Towards Optimizing with Large Language Model

. Nationd] Large Language Models as Evolutionary Optimizers

11292221
Contre 1 FS LARGE LANGUAGE MODEL-BASED EVOLUTIONARY
entre for Fro
Yu o pumeniofcm OPTIMIZER: REASONING WITH ELITISM
National Southern Univers
10894600 liu_sheng . . . ; I
< Shuyv - . T T T ST - T T -
Arur . 3
Guangdong Provincia Large Language Models As Evolution Strategies
Computation, Depar
Southern Ui arun. Robert Tjarko Lange Yingtao Tian Yujin Tang
TU Berlin, Google DeepMind Google DeepMind Google DeepMind
w ! Comy Germany, Japan Japan Japan
Shell robert.t.lange@tu-berlin.de alantian@google.com yujintang@google.com

* Key Direction

* LLM-assisted End-to-end Optimization

* LLM-assisted Optimization Algorithm Generation

12

LLM Guided Evolutionary Optimization

* LLM-assisted End-to-end Optimization

* LLMs show strong potential for black-box optimization.
« OPRO (Yangetal, 2023). |terative solution generation via optimization trajectories.
e LMEA (Huetal, 20242). | | Ms perform crossover and mutation in EA.

e LEQ (Brahmacharyetal, 2025): Exploration and exploitation balanced through elitism.

* More details in Topic Il

objective function
evaluator
A
generated
return top solutions_ solutions

when finish A meta-prompt
LLM as solution-score pairs
optimizer | task description

(a) OPRO Framework 13

LLM Guided Evolutionary Optimization

* LLM-assisted Optimization Algorithm Generation

 LLMs generate optimization algorithms beyond acting as
operators.

* Single-Round Generation:

HybridMeta (Pluhaceketal., 2023) . | | Ms design hybrid metaheuristics
by combining known methods.

Optimus (AhmadiTeshnizietal,, 2023) . | | Ms gutomate MILP modeling,
solving, and debugging.

* |terative Evolution:

Funsearch(Romera-Paredes etal,, 2024). | | Ms paired with evaluators to
evolve interpretable programs solving combinatorial and
algorithmic problems.

EQH (Livetal, 2024b). | | Ms co-evolve heuristic ideas and code
structures.

Reevo (e etal, 2024). Reflective evolution enhances algorithm
optimization via short- and long-term feedback.

e More details in Topic Il

The Tutorial Organization

e Topic l: Evolutionary Optimization Based on Machine Learning
Prof. Xiaodong Li, IEEE Fellow, RMIT University

e Topic ll: Business Optimization and Problem Formulation Using Large
Language Models

Prof. Yuan Sun, La Trobe University
e Topic lll: Evolutionary Optimization Guided by Large Models

Huigeng Ye, Tsinghua University

15

References

(Meitei et al., 2020) Meitei N Y, Baishnab K L, Trivedi G. 3D-IC partitioning method based on genetic algorithm[J]. IET Circuits, Devices & Systems, 2020,

14(7): 1104-1109.

(Dumas et al., 1991) Dumas Y, Desrosiers J, Soumis F. The pickup and delivery problem with time windows[J]. European journal of operational research, 1991

54(1): 7-22.

(Villa, 2001) Villa A. Introducing some supply chain management problemsl[J]. International Journal of Production Economics, 2001, 73(1): 1-4.

(Achterberg, 2009) Achterberg T. SCIP: solving constraint integer programs[J]. Mathematical Programming Computation, 2009, 1: 1-41.

(AmariS, 1993) AmariS. Backpropagation and stochastic gradient descent method[J]. Neurocomputing, 1993, 5(4-5): 185-196.

(Kelley, 2003) Kelley C T. Solving nonlinear equations with Newton's method[M]. Society for Industrial and Applied Mathematics, 2003.

(Biegler et al., 2009) Biegler L T, Zavala V M. Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic

optimization[J]. Computers & Chemical Engineering, 2009, 33(3): 575-582.

(Pedroso, 2011) Pedroso J P. Optimization with gurobi and python[J]. INESC Porto and Universidade do Porto, Porto, Portugal, 2011, 1.

(Bliek1u et al., 2014) Bliek1u C, Bonami P, Lodi A. Solving mixed-integer quadratic programming problems with IBM-CPLEX: a progress report[C].

Proceedings of the twenty-sixth RAMP symposium. 2014: 16-17.

(Morrison et al., 2016) Morrison D R, Jacobson S H, Sauppe J J, et al. Branch-and-bound algorithms: A survey of recent advances in searching, branching,

and pruning[ild. Discrete Optimization, 2016, 19: 79-102.

(Dey et al., 2018) Dey S S, Molinaro M. Theoretical challenges towards cutting-plane selection[J]. Mathematical Programming, 2018, 170: 237-266.

(Song et al., 2020) Song J, Yue Y, Dilkina B. A general large neighborhood search framework for solving integer linear programs[J]. Advances in Neural

Information Processing Systems, 2020, 33: 20012-20023.

(Ye et al., 2023) Ye H, Wang H, Xu H, et al. Adaptive constraint partition based optimization framework for large-scale integer linear programming (student

abstract)}C% Proceedings of the AAAI Conference on Artificial Intelligence. 2023, 37(13): 16376-16377.

(Liu et al., 2023) Liu S, Lin Q, Li J, et al. A survey on learnable evolutionary algorithms for scalable multiobjective optimization[J]. IEEE Transactions on

Evolutionary Computation, 2023, 27(6): 1941-1961.

&Yang et al., 2024) Yang T, Ye H, Xu H. Learning to generate scalable milp instances[C].Proceedings of the Genetic and Evolutionary Computation Conference
ompanion. 2024: 159-162.

ge et al., 2025a) Ye H, Cheng Y, Xu H, et al. MILPBench: A Large-scale Benchmark Test Suite for Mixed Integer Linear Programming Problems|[C].
roceedings of the Genetic and Evolutionary Computation Conference Companion. 2025.

(Yang et al., 2023) Yang C, Wang X, Lu Y, et al. Large Language Models as Optimizers[C]. The Twelfth International Conference on Learning Representations

fléiEuEetZ?)IZI’élznga) Liu S, Chen C, Qu X, et al. Large language models as evolutionary optimizers[C]. 2024 IEEE Congress on Evolutionary Computation (CEC).

f\lBrahmachary et al., 2025) Brahmachary S, Joshi S M, Panda A, et al. Large language model-based evolutionary optimizer: Reasoning with elitism[J].
eurocomputing, 2025, 622: 129272.

(Pluhacek et al., 2023) Pluhacek M, Kazikova A, Kadavy T, et al. Leveraging large language models for the generation of novel metaheuristic optimization

al orithms[C]hProceedings of the ComJ)anion Conference on Genetic and Evolutionary Computation. 2023: 1812-1820.

AhmadiTeshnizi et al., 2023) AhmadiTeshnizi A, Gao W, Udell M. Optimus: Optimization modeling using mip solvers and large language models[J]. arXiv

preprint arXiv:2310.06116, 2023.

(Romera-Paredes et al., 2024) Romera-Paredes B, Barekatain M, Novikov A, et al. Mathematical discoveries from program search with large language

models[J]. Nature, 2024, 625(7995): 468-475.

eriu et al., 2024b) Liu F, Xialiang T, Yuan M, et al. Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using Large Language Model[C].
orty-first International Conference on Machine Learning.

&Ye et al., 2024?\|Ye H, Wang J, Cao Z, et al. ReEvo: Large Language Models as Hyper-Heuristics with Reflective Evolution[C]. The Thirty-eighth Annual
onference on Neural Information Processing Systems.

(Deng et al., 2023) Deng Y, Xia C S, Peng H, et al. Large language models are zero-shot fuzzers: Fuzzing deep-learning libraries via large language models[C’

Proceedings of the 32nd ACM SIGSOFT international symposium on software testing and analysis. 2023: 423-435.

(Lemieux et al., 2023) Lemieux C, Inala J P, Lahiri S K, et al. Codamosa: Escaping coverage plateaus in test generation with pre-trained large language

models[C]. 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE, 2023: 919-931.

16

Evolutionary Optimization Based on
Machine Learning

Xiaodong Li
RMIT University,
Melbourne, Victoria, Australia

Why Can Machine Learning Help?

® Traditional optimization often relies on handcrafted rules for decision-making.

® Minor variations in problems frequently require redeveloping algorithms.

® In many industries, similar instances are solved repeatedly, often from scratch.

®* Thereis an abundance of data, e.g., historical operations data collected over time.

® Collecting optimal solutions for training is feasible due to advanced solvers.

® Machine learning and deep learning are mature, powerful, and widely accessible.

18

Solution Prediction via Machine Learning: Training

.

Solve a set of easy problem instances to optimality.

Label decision variables using their optimal solution values.

Extract features to characterize each decision variable.

Train a machine learning model to predict optimal values for decision variables.

instances with optimal routes

fan

N
4
f1

mapping edges to feature space

fan

learning a decision boundary

19

Features

A list of features that may be useful:

Graph-based features: e.g., node weight, node degree, edge distance

Mathematical features: e.g., objective bound (sum of weights of a node and
its neighbors for maximum weighted clique problems)

MIP formulation features: e.g., cost coefficients, number of non-zeros in the
constraint matrix etc.

LP relaxation features: e.g., reduced costs, optimal LP solution values
Heuristic-based features: e.g., value-to-weight ratio in knapsack problems

Statistical features from sample solutions: e.g., correlation between variable
values and objective value, frequency of variable values in high-quality
solutions (similar to Estimation of Distribution Algorithms or Ant Colony
Optimization).

Machine Learning Models

Using Pre-defined Features

® Logistic Regression

® Support Vector Machines

® Deep Neural Networks
Automatically Learning Features

® Graph Neural Networks (GNNs):
Leverage graph structure to learn
node/edge-level representations

® Autoencoders: Learn compact,
informative feature representations
from raw inputs

® Transformers: Capture long-range
dependencies, useful for sequences
or sets

0.75 A

0.50 1

0.25 1

N 0.00 -

—0.25 A

—0.50

—0.75 A

—

non-optimal
* . +« optimal
o e

-10 -0.5 0.0 0.5 10

21

Solution Prediction via Machine Learning: Testing

» Given a test problem instance, the trained machine learning model predicts
the likelihood that each binary decision variable is part of the optimal
solution (i.e., has a value of 1).

1
a test problem instance mapping edges to feature space predictions for edges

Note: Any bounded integer variable can be represented as a set of binary variables,
making this approach broadly applicable.

22

Constructing Solutions from ML Predictions

®* Use predicted probabilities to greedily construct solutions, selecting at each
step the variable most likely to be in the optimal solution.

®* Expected to outperform hand-crafted heuristics, since such rules can
be incorporated as features into the learning model.

® (Can be combined with tree-based search methods (e.g., DFS) to prioritize

high-quality regions of the solution space. (NeurlPS’18, IJCNN’21)(ti et al., 2018,
Shen et al., 2021)

Pruning the Search Space with ML Predictions

» Fix or remove decision variables that are unlikely to be part of the optimal
solution. Specifically, variables with predicted probabilities below a
threshold can be fixed to 0. (TPMAI’19, AAAI’19)(Sun etal., 2019, Lauri et al., 2019)

» Apply a search algorithm to find a solution in the resulting reduced problem
space, enabling faster and more focused optimization.

®
@

removing low-quality edges

predictions for edges

24

Extensions of ML-Guided Pruning

Constraint-Based Pruning (AAAI 2020)(Pine et al., 2020)

® Train a GNN to predict binary variable values in MIPs. Prune the search space via a global

inequality constraint that limits deviation from the predicted solution.

Generalization to Unseen Instances (OR Spectrum 2021)(Sun etal., 2021)

® Train ML models on one category of instances and test across a variety of instances with

different characteristics.

Multi-Stage Pruning (Journal of Heuristics, 2023) (tauri et al., 2023)

® Apply the trained ML model recursively to prune the search space. Each stage trains a new

classifier to progressively eliminate harder-to-prune elements.

ML-Guided Column Generation (ICLR 2023)(5un et al., 2022a)

® Extend to problem formulations with exponentially many variables. Use the model to filter

and select high-quality variables.

Reduce-Then-Optimize (Transportation Science, 2025)(Spieckermann et al., 2025)

® Use a GNN to identify a relevant subset of variables in the Fixed-Charge Transportation

Problem (FCTP), reducing problem size and boosting solver efficiency.

Sampling Solutions Based on ML Predictions

Heuristic rule

At each step, the probability of selecting —— ML Prediction
variable v; is:

Vi
Zjes Yj

pi =

1 1.1 1.2 1.3 1.4 1.5 1.6
Objective value of samples (larger — better)

where:
* y;is the ML prediction (likelihood of inclusion) for v;
e Sisthe set of feasible candidate variables that can be added to the solution.

Sampling solutions for the pricing problem in Column Generation (AAAI’22)(Shenetal,
2022)

* Adiverse set of high-quality solutions is required — not just one optimal solution.
 Compared to traditional sampling, this approach yields better-quality columns;

 Compared to exact or heuristic methods, it generates more high-quality solutions.

26

Boosting ACO with ML Predictions

Ant Colony Optimization (ACO) is a probabilistic

algorithm that samples solutions using:
p; = Tini
=
Zjes nj

=}
©

)

o
©

—— SVM-AS,

—— SVM-AS,
SVM-AS,

— AS

®
o

normalized objective value

* m:is heuristic rule,

10000 200000 400000 600000 800000 1000000

* T:pheromone trial reflecting the “evolved” quality of number of solutions constructed
solution components.

Typically, tis initialized uniformly and n is set

based on domain-specific heuristic rules. g | F’i
ML-Enhanced Variants of ACO (COR 2022)Sunetal, £ " |
2022a) 5
é —— SVM-MMAS;
b SVM-ACOnZ Set Ni = Yi, where Vi is the ML predicted é o851 —— SVM-MMAS,,
probability; ; T e
b SVM'ACOT: Initia“ze Tl = yl USing ML predictions; number of solutions constructed

* SVM-ACOg: Set the 7 value as a combination of ML

predictions and a heuristic rule .

Extensions of ML-Enhanced ACO

DeepACO (NeurlPS’23)(Yeetal, 2023)

 Use deep reinforcement learning to learn heuristic measures and is evaluated on eight
combinatorial optimization problems.

LN-ACO (GECCQ’23)(tuetal, 2023)

* Use an “intelligent ant” with a pre-trained GNN to predict variable selection probabilities,
forming a hybrid colony with traditional ants to guide the search process.

DLQ-ACO (G ECCO'23)(Ram|’rez et al., 2023)

* Use GNN to generate variable selection probabilities and Q-learning to decide during
solution construction whether to use ML-derived probabilities or traditional ACO heuristics.

ML-ACO for Column Generation (GECCQ’24) v etal., 2024)

* Incorporate ML predictions into the heuristic measures of ACO to efficiently generate
multiple diverse, high-quality solutions for Column Generation.

GFACS (AISTATS’25)(Kim et al., 2025)

 Uses Generative Flow Networks to learn a multi-modal prior distribution to set the heuristic
matrix for ACO, evaluated on seven combinatorial optimization problems.

Adaptive Solution Prediction via Machine Learning

Limitations of Offline-Trained ML Models: Accuracy is often limited by

e Static, one-shot predictions that do not adapt during the search process.

* Challenges in crafting features that effectively represent decision variables.

* Distribution shift between training and testing instances.

Adaptive Solution Prediction (ASP) (EJOR 2023)(shen etal., 2023)

* Refines ML predictions iteratively during the search on a problem instance.

* Incorporates feedback from search to progressively enhance prediction.

» Use statistical features extracted from sampled solutions to update predictions over time.

* Examples of statistical features include:
— Correlation between variable values and objective value
— Frequency of variables used in high-quality solutions (e.g., pheromone update in ACO)

As the search generates better solutions, statistical features evolve, leading to more informed
and accurate predictions.

Adaptive Solution Prediction via Machine Learning

Training phase e el -
A \‘\ A
\
\
\
\
\
o' 0,° O
Extracting features ‘8 ... Training .. ‘ ‘..
@) , - o) o oo o ®
\ ® e%e ®\e®
o O ¢
S~ ! =

~ - -

TSP instances (with known Edges in the feature space A trained ML model
optimal solutions in red) (training data)

Testing phase

ML prediction Search
./' method
@ S
Extracting features |
Best-found
solution

e

An unseen TSP instance Edges in the feature space

(with an unknown optimal solution)

Relationship Between ASP and EDAs

Similarities
* Both sample the solution space of a specific instance. e,

* Both update a probability distribution to guide toward

better solutions. N

* Both exhibit online learning through iterative eSS
refinement.

Differences Ty o

* ASP uses an offline-trained ML model with knowledge
from historical instances;

— e e0®
* EDAs (Estimation of Distribution Algorithms)
typically learn from scratch during each run. ops |

* ASP generalizes EDAs:
EDA builds and sample an explicit
probabilistic model from a pool of
promising candidate solutions (source:

— ASP builds its prediction model from data using Wikipedia).
multiple features (can include ACO-style rules).

— For example, ACO updates probabilistic mode
(pheromone) using fixed rules.

Relationship Between ASP and ML-ACO

Similarities

* Both integrate machine learning into metaheuristic search for combinatorial
optimization.

* Both use ML predictions to guide solution construction or sampling.

* Both allow for adaptive behavior during problem-solving.

Differences
Aspect ML-ACO ASP
. . Injects ML into ACO Predicts variable values to
Integration Point
components (pheromone, heuristic) guide solution construction
Adaptivit Often static once ML predictions are Dynamically refined using
privity embedded feedback from ongoing search
. Uses ML to improve ACO's Uses offline ML + online
Learning Mode . . .
components offline statistical adaptation
Enhances specific ACO variants (e.g., General framework applicable

Generalization SVM-ACO) beyond ACO

Challenges and Future Directions

«# Key Challenges

Generalization Across Problems: Building ML models that work across a class of problems
or broader MILP remains difficult.

Feasibility & Guarantees: ML predictions may violate constraints or yield infeasible
solutions; providing optimality gap guarantee is challenging.

Refining Predictions: Most ML models produce static, one-shot predictions. Online
refinement and instance-specific adaptation are underexplored.

% Future Directions

Expanding to Other Algorithms & Problems: Apply ML to enhance e.g., PSO, GA, or
handle dynamic and multi-objective optimization problems.

Cross-Domain Generalization: Develop generic ML models using meta-learning, instance-
space analysis, or domain-agnostic feature representations.

Adaptive Learning: Move beyond ASP to integrate feedback (and possibly re-training)
during search for better adaptability and ML predictions.

Exploring New ML Paradigms: Leverage LLMs for heuristic code generation and MILP
model formulation (see next sections).

References

+ (Lietal., 2018) Li, Z., Chen, Q., & Koltun, V. (2018). Combinatorial optimization with graph convolutional networks and guided tree
search. Advances in Neural Information Processing Systems.

e (Shen et al., 2021) Shen, Y., Sun, Y., Eberhard, A., & Li, X. (2021, July). Learning primal heuristics for mixed integer programs. In 2021
International Joint Conference on Neural Networks (IJCNN) IEEE.

* (Sunetal., 2019) Sun, Y, Li, X,, & Ernst, A. (2019). Using statistical measures and machine learning for graph reduction to solve
maximum weight clique problems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(5), 1746-1760.

» (Lauri et al., 2019) Lauri, J., & Dutta, S. (2019, July). Fine-grained search space classification for hard enumeration variants of subset
problems. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, No. 01, pp. 2314-2321).

* (Ding et al., 2020) Ding, J. Y., Zhang, C., Shen, L., Li, S., Wang, B., Xu, Y., & Song, L. (2020, April). Accelerating primal solution findings
for mixed integer programs based on solution prediction. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 02,
pp. 1452-1459).

* (Sunetal., 2021) Sun, Y., Ernst, A., Li, X., & Weiner, J. (2021). Generalization of machine learning for problem reduction: a case study on
travelling salesman problems. OR Spectrum, 43(3), 607-633.

* (Lauri et al., 2023) Lauri, J., Dutta, S., Grassia, M., & Ajwani, D. (2023). Learning fine-grained search space pruning and heuristics for
combinatorial optimization. Journal of Heuristics, 29(2), 313-347.

* (Sunetal., 2022a) Sun, Y., Ernst, A. T., Li, X., & Weiner, J. (2022). Learning to generate columns with application to vertex coloring.

In The Eleventh International Conference on Learning Representations (ICLR).

* (Spieckermann et al., 2025) Spieckermann, C., Minner, S., & Schiffer, M. (2025). Reduce-then-Optimize for the Fixed-Charge
Transportation Problem. Transportation Science, 59(3), 540-564.

* (Shen et al., 2022) Shen, Y., Sun, Y., Li, X, Eberhard, A., & Ernst, A. (2022, June). Enhancing column generation by a machine-learning-
based pricing heuristic for graph coloring. In Proceedings of the AAAI Conference on Atrtificial Intelligence (Vol. 36, No. 9, pp. 9926-9934).

* (Sunetal., 2022b) Sun, Y., Wang, S., Shen, Y., Li, X., Ernst, A. T., & Kirley, M. (2022). Boosting ant colony optimization via solution
prediction and machine learning. Computers & Operations Research, 143, 105769.

* (Yeetal., 2023) Ye, H., Wang, J., Cao, Z., Liang, H., & Li, Y. (2023). DeepACO: Neural-enhanced ant systems for combinatorial
optimization. Advances in Neural Information Processing Systems (NeurlPS), 36, 43706-43728.

e (Liuetal., 2023) Liu, Y., Qiu, J., Hart, E., Yu, Y., Gan, Z., & Li, W. (2023, July). Learning-based neural ant colony optimization.

In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (pp. 47-55).

* (Ramirez et al., 2023) Ramirez Sanchez, J. E., Chacon Sartori, C., & Blum, C. (2023, July). Q-Learning ant colony optimization supported
by deep learning for target set selection. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (pp. 357-
366).

* (Xuetal., 2024) Xu, H., Shen, Y., Sun, Y., & Li, X. (2024, July). Machine Learning-Enhanced Ant Colony Optimization for Column
Generation. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (pp. 1073-1081).

* (Kim et al., 2025) Kim, M., Choi, S., Kim, H., Son, J., Park, J., & Bengio, Y. Ant Colony Sampling with GFlowNets for Combinatorial
Optimization. In The 28th International Conference on Atrtificial Intelligence and Statistics (AISTATS).

* (Shen et al., 2023) Shen, Y., Sun, Y., Li, X, Eberhard, A., & Ernst, A. (2023). Adaptive solution prediction for combinatorial 34
optimization. European Journal of Operational Research, 309(3), 1392-1408.

Topic ll: Business Optimization and
Problem Formulation Using Large
Language Models

Yuan Sun
La Trobe University,
Melbourne, Australia

Business Optimization

Using mathematical models and analytical
techniques to enhance decision-making,
improve efficiency, reduce costs, and
maximize profitability for a business.

Typical Business Optimization Problems:
Supply Chain Optimization

Job Shop Scheduling

Inventory Management

Vehicle Routing Problem

Production Planning

Portfolio Optimization

Staff Scheduling

vV Vv VvV V VY V V

Inventory Distribution
Managemen t Center

36

Example

>
>

| am a retailer selling laptops.

Currently, there are 1015 laptops in
the store.

Each laptop in inventory incurs a
cost of $1.0 per week.

The forecast demand for laptops at
the store in the next 8 weeks are

{...}

Ordering laptops incurs a fixed cost
of $2000 per order with up to 6000
laptops.

What is the best plan to order
laptops for the next 8 weeks to
minimise the inventory and logistic
costs while satisfying demand?

Weeks

37

Challenges

Traditional way of applying optimization to solve business problems:

® Requires expert knowledge to
translate natural language into
solvable models

® Experts must have strong
programming skills

® Interpretation of results and
turning them into business
actions is non-trivial

> Expertise is scarce, expensive, and often specialized to one technique.

> Optimization process is time-consuming even for skilled professionals.

38

Automating Problem Formulation Using LLMs

Aim to use LLMs to
automatically convert natural
language descriptions of
business problems into:

 Mathematical models
* Computer programs

This automation reduces
reliance on expert knowledge
and speeds up the
optimization process 7!

I am a retailer selling laptops. Currently, there are 1015 lap-
tops in the store. Each laptop in inventory incurs a cost of
$1.0 per week. The forecast demand for laptops at the store

in the next 8 weeks are {...}. Ordering laptops incurs a fixed
cost of $2000 per order with up to 6000 laptops. What is the
best plan to order laptops for the next 8 weeks to minimise the
inventory and logistic costs while satisfying demand?

Objective : Minimise Y5, (s; + 2000y;).

Constraint : z; < 6000y, for ¢ ranging from 1 to 8.
Constraint : s; = s;—1 + z; — dy, for t ranging from 1 to 8.
Constraint : s; > 0, for ¢ ranging from 1 to 8.

Variables : z; is the number of laptops ordered in week ¢.
Variables : y; indicates whether laptops are ordered in week ¢.
Variables : s; is the number of laptops unsold at week ¢.

Create the variables

x = [solver.IntVar(®, solver.infinity(), f'x_{t}') for t in range(9)]
y = [solver.Boolvar(f'y_{t}') for t in range(9)]

s = [solver.IntVar(@, solver.infinity(), f's_{t}') for t in range(9)]

Define the objective function
solver.Minimize(sum(s[t] + 2000 * y[t] for t in range(1, 9)))
Add the constraints
for t in range(1, 9):
solver.Add(s[t] == s[t - 1] + x[t] - d[t - 1])
solver.Add(x[t] <= 6000 * y[t])

39

Early Efforts and Examples

@ Academic:

e Stanford University

e University of Cambridge
e Zhejiang University

e Chinese University of
Hong Kong

.........

® Huawei
e Gurobi
e Alibaba

e Microsoft

Augmenting Operations Research
with Auto-Formulation of
Optimization Models from

Problem Descriptions

Rindranirina Ramamonjison, Haley
Li, Timothy T. Yu, Shiqgi He, et al.

OptiMUS: Scalable Optimization
Modeling with (MI)LP Solvers and
Large Language Models

Ali Ahmaditeshnizi, Wenzhi
Gao, Madeleine Udell

EMNLP 2022 ICML 2024
- Copilot George
.‘ l@l
GUTObOt : MindOpt
By community builder & : 6 Months

Helps with optimization modeling, Gurobi API questions, and
troubleshooting - it can even run and debug gurobipy code! Provided

by Gurobi Optimization.

: T2-level Al Engineer

40

Method Overview

‘@ Prompt-Based Techniques

® Use carefully crafted prompts to guide LLMs in translating natural language into
optimization models.

© Prompt Optimization

® |teratively refine prompts based on model output and feedback to improve
formulation accuracy.

“\. Fine-Tuning Approaches

® Train LLMs on domain-specific datasets (fully or efficiently) to enhance
performance and consistency.

& Workflow Architectures

® Structure the problem-solving process using single-agent or multi-agent
systems for modular reasoning.

O Retrieval-Augmented Generation (RAG)

®* Dynamically fetch and insert relevant past examples or context to improve task
relevance and accuracy.

Zero-Shot Prompting

Use a LLM to formulate an
optimization model from natural
language with no examples [*!

Strengths:

e Easy to use and implement

e No labelled data or fine-tuning

e Compatible with commercial LLMs
L. Limitations:

e Accuracy may drop on complex tasks

e Highly sensitive to prompt phrasing

Formulate this problem as a MIP model:
| am a retailer selling laptops. Currently,
there are 1015 laptops in the store. Each
laptop in inventory incurs a cost of $1.0
per week...

|
@ ChatGPT
l

Here’s a MIP formulation for the problem:

Objective
8
min Y (F -y +h-1I)
t=1
Constraints
It:It,I-‘rfl}t—Dt Vtzl,,S
2 <Q-y Vt=1,..,8

Ty € Zzﬂv Yt € {07 1}7 It € ZZU

42

Prompt Optimization

> The process of automatically improving prompts to maximize LLM
performance on a task.

> Altering the wording or structure of prompts to better align with
model expectations.

_ [Prompt —P[LLM]
Notable Methods: T

® OPRO[?I- Large Language Models as l
Optimizers: Uses LLMs to propose and
refine prompts iteratively based on
performance feedback.

[Optimizer <4— Feedback

®* EvoPrompt(3/— LLMs + Evolutionary & Benefit:
Algorithms: Applies evolutionary search to
discover high-performing prompts through
generations.

Automates the search for high-
quality prompts.

Few-Shot Prompting

> LLM is shown a few examples of input-
output pairs before being asked to
solve a new task.

> Demonstrates how a problem
description maps to formulation.

Benefits:

e Enables LLMs to learn task patterns

e Potentially more accurate than zero-
shot prompting

. Limitations:

e Limited by prompt token length (can
only include a few examples)

e Performance highly depends on quality
and diversity of examples

and $20 for B, formulate a MIP model to
Wimize profit. /

Few-Shot Prompt
/ Example \

Q: A bakery makes two items: bread and
cake. Bread takes 1 hour to bake and
cake takes 2 hours. The oven is available
for 40 hours per week. Bread earns $4
profit, and cake earns S7. Formulate an
integer linear programming model to
maximize profit.

A: max 4B + 7C
s.t. B+2C<40
B, C € No

New Task
Q: A company produces products A and
B. Each A requires 2 hours of labor, each
B requires 1 hour. With 100 total labor
hours available and profits of $30 for A

Retrieval-Augmented Generation (RAG)

> Enhances LLMs by retrieving %
relevant documents and Q -
inserting them into prompts. =m — gl Generator
> Helps handle complex or l search lFet”eve l
domain-specific tasks with
limited LLM internal -
knowledge. (User

<B DRoC (Decomposed Retrieval of Constraints)*! ;
* Decomposes complex optimization problems into individual constraints.
* Retrieves relevant documentation/code for each constraint.

* Merges retrieved content to assist LLMs in generating accurate solver-
compatible programs.

45

Chain-of-Thought Prompting

Encourages LLMs to reason step-by-step before generating the final formulation[®!

Mimics human thought processes by decomposing complex tasks into logical steps

Chain-of-Thought Prompt

Example
Q: A bakery makes two items: bread and cake. Bread takes 1 hour to bake and cake
takes 2 hours. The oven is available for 40 hours per week. Bread earns $4 profit, and
cake earns S7. Formulate an integer linear programming model to maximize profit.

A: 1) Let B = number of bread loaves, C = number of cakes.

OaVe Final model:
2) These must be non-negative integers. max 4B + 7C
3) Objective: Maximize profit > 4B + 7C s.t. B+2C<40
4) Constraint: Bread takes 1 hour, cake takes 2 - B + 2C <40 B C€N,

New Task

Q: A company produces products A and B. Each A requires 2 hours of labor, each B
requires 1 hour. With 100 total labor hours available and profits of $30 for A and $20
for B, formulate a MIP model to maximize profit.

Single-Agent Workflow

> Asingle LLM agent is used to handle the
entire problem formulation task in a
modular, step-by-step manner.

> The LLM is prompted to sequentially
complete subtasks: extract variables,
define objective, write constraints, and
generate code.

> More scalable for long problems due to
reduced context length

> Compatible with prompt-based or fine-
tuned models

\.

Extract Variables

v

‘

7

\,

Define Objective

‘

S

v

7~

\,

Write Constraints

~

W

!

7~

\

Generate Code

1

v

Multi-Agent Workflow

> Inspired by expert collaboration and chain-of-responsibility paradigms.

> Multiple LLMs or role-specialized agents collaborate in a structured workflow
to perform different subtasks in problem formulation.

> Roles may include: Conductor (Coordinator), Interpreter, Formulator,
Programmer, and Validator.

Advantages:
® Improved performance via task specialization
® Easier to debug or refine each step/agent
' Limitations:
® Higher complexity and resource-intensive (compute, cost, latency)

® Requires careful design of communication between agents

Multi-Agent Workflow Example

Chain-of-Experts (CoE)!®!

Modeler, Programmer).

® Agents collaborate iteratively to analyze, formulate, and

verify optimization models.

A central Conductor coordinates specialized LLM agents (e.g., Interpreter,

® Combines forward reasoning (expert-driven modeling) with backward
reflection (feedback-based revision).

Problem Input: In the context of manufacturing planning, we tackle the Multi-level Lot Sizing Problem with Backlogging. We assume that...

|

-

B

@)
A=

@ start

|

1 RN
Terminology ‘D S
Interpreter\:'\‘ * {::}

e

N
(O Conductor

Pl
o

~
~
~

B e YA
@Modeling

)

Terminology Interpreter:
“backlogging” refers to a
situation where customer
orders cannot be met on time...

Modeling Expert:

I apologize that I have
reviewed the modeling process,
there was an error ...

—

®
-

Modeling Expert:
Variables:x!, I}, Bf
Constraints:...
Object: Minimize ...

Programmer:

I‘ve reviewed the code, and
confirm that it accurately
reflects the modeling...

@
—

@

Programmer:
import gurobipy as gp

from gurobipy import GRB

model = gp.Model(” MLSP") ...

 16)

Evaluator’s Feedback:

&= Line 41: Variable Q" is not

defined...

A@ Expert ‘ ®
Programmer Programmer: @ Evaluator’s —> forward pass
o prcstecomecd o\ B el 18 e | —— backward pass
C -
_ Evaluator @GN _Use;Q modeling... Run successfully! — forward pass
_/

J

49

Multi-Agent Workflow Example

OptiMmus 7!

® Manager: Oversees the workflow and coordinates agent interaction.

® Preprocessor: Extracts variables, objectives, and constraints from text.

®* Formulator: Converts each clause into formal math (e.g., LaTeX).

® Programmer: Generates and debugs solver code.

® Evaluator: Runs code and checks for correctness.

Problem Description

A factory

produces several products.
Each product

requires different amounts
of raw materials, machine
time, and labor. Each
product has a price.

The factory needs

to determine how much

of each product to

produce to maximize the
revenue while not
exceeding resource
capacities.

Agent Team
Pre-processing Initial
> Structured »| Manager
Problem
S
Parameter Data ; A
\
’
- P: 131, Y "4 ﬁ Formulator
MachineTime: [4,8, ...,5],
MaterialRequirement: » Evaluator Programmer
L0852 oo g &1
cee y
_ [oo p 2001)

>

Revenue: $4124

Production:
o7z, 21

50

Agentic Workflow Optimisation

> Traditional multi-agent LLM workflows require manual design of agent roles

and communication strategies.

> Agentic workflow optimisation aims to automatically generate and

refine multi-agent workflows for complex tasks like problem formulation.

> Enhances scalability, adaptability, and performance without hand-

Generation

% AFLOWIE]: Automating Agentic Workflow /

engineered pipelines.

Represents workflows as graphs of —»-»
modular, reusable LLM-invoking nodes.

Uses Monte Carlo Tree Search (MCTS) to \

explore and optimize workflows.

Fine-Tuning

> Refers to training a pre-trained ST el

language model on a specific | | (input]
dataset of input-output pairs. m—p | | Whowrte tPrideand | | mmp

> Input: problem description [Cutpu

Pre-Trained (The book was written Fine-Tuned
LLM by Jane Austen. LLM

),

> Output: formulation & code

Strengths

* Improves performance on domain-specific or complex tasks
* More reliable and consistent than prompt-only methods

! Limitations

* Requires labelled datasets (e.g., NL + LP/MIP pairs)
 Computationally expensive and time-consuming

52

Fine-Tuning Examples

Full Fine-Tuning: Updates all model parameters on domain-specific data

Efficient Fine-Tuning: Updates a subset of parameters or adds lightweight modules:

>
>

LoRA 31— Low-rank adaptation to attention weights

Adapters — Trainable modules inserted into the transformer stack

" Recent Efforts

>

LM4OPT [']: Fine-tunes LLaMA-2-7B to convert natural language into optimization
models using the NL4Opt dataset.

OptLLM [21': Trains Qwen-based agents with multi-turn interaction and solver
feedback for optimization modeling.

ORLM [10]': Fine-tunes several open-source 7B-scale LLMs using the open-instruct
framework and OR-Instruct data.

LMBO [111: Applies full fine-tuning to real-world production scheduling,
demonstrating improved task performance and code generation.

LLMOPT [12I: Combines structured five-part representations with supervised fine-
tuning for general-purpose optimization modeling.

Benchmark Datasets

Evaluate the capability and accuracy of LLMs in formulating optimization models

Support fine-tuning and instruction alignment for task specialization

Existing Benchmark Datasets:

NL4Opt [14]: 1101 annotated LP problems across 6 domains and tasks.

Mamo [13]: 863 MILP problem instances (652 Easy, 211 Complex)

NLP4LP [7] : 65 textbook-sourced LP and MILP instances

ComplexOR [6] : 37 expert-annotated OR problems from diverse real-world sources
IndustryOR [*91: 100 real-world OR problems, 5 types, 3 difficulty levels
OPTIBENCH [16!: 605 verified problems covering LP, NLP, MIP, and tabular data

Sched **: Two scheduling datasets with 1,700 instances via modular expansion.

Synthetic Datasets

Motivation
> Lack of large-scale, high-quality labelled datasets for optimization tasks.

> Manual annotation is expensive, time-consuming, and requires domain
expertise.

“\. Synthetic Dataset & Approach

> LLMOPT 12l gugments 1,763 seed problems using diverse instruction
templates via GPT-4, followed by expert filtering and detailed labeling.

> OR-Instruct [1%1: Generated by expanding 686 seed cases using GPT-4,
structured prompts, augmentation (e.g., rephrasing, constraint variation),
and human filtering to ensure correctness.

> RESOCRATIC-29K [16]: Generated by reverse-constructing optimization
problems from formulations, then translating and filtering them for

correctness and diversity.

Challenges and Future Directions

' Challenges

Ambiguity and missing details in natural language descriptions

Vast and diverse space of business optimization problem types

Limited availability of high-quality, labeled datasets for training and evaluation
Prompt sensitivity, hallucination, and generation of solver-incompatible models
High cost and complexity of running or accessing large language models
Future Directions

Scalable synthetic data generation (e.g., ReSocratic) for robust training
Enriched benchmarks covering various real-world business optimization tasks
Enhanced prompt optimization and retrieval-augmented generation methods
Agentic workflow automation (e.g., AFLOW) for multi-agent coordination

Integration of validation tools and solver feedback for self-debugging

\7\7\7\7\7\7%\7\7\7\7\7

Development of cost-efficient LLMs with strong optimization performance

References

[1] Ahmed, T., & Choudhury, S. (2024). LM4OPT: Unveiling the potential of Large Language Models in formulating mathematical optimization

problems. INFOR: Information Systems and Operational Research, 62(4), 559-572.

[2] Yang, C., Wang, X., Lu, Y., Liu, H., Le, Q. V., Zhou, D., & Chen, X. (2024). Large Language Models as Optimizers. In The Twelfth International Conference
on Learning Representations (ICLR).

[3] Guo, Q., Wang, R., Guo, J., Li, B., Song, K., Tan, X,, ... & Yang, Y. (2024) Connecting Large Language Models with Evolutionary Algorithms Yields
Powerful Prompt Optimizers. In The Twelfth International Conference on Learning Representations (ICLR).

[4] Jiang, X., Wu, Y., Zhang, C., & Zhang, Y. (2025). DRoC: Elevating Large Language Models for Complex Vehicle Routing via Decomposed Retrieval of
Constraints. In 13th International Conference on Learning Representations, ICLR 2025.

[5] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., ... & Zhou, D. (2022). Chain-of-thought prompting elicits reasoning in large language
models. Advances in Neural Information Processing Systems (NeurlIPS), 35, 24824-24837.

[6] Xiao, Z., Zhang, D., Wu, Y., Xu, L., Wang, Y. J., Han, X,, ... & Chen, G. (2024). Chain-of-experts: When LLMs meet complex operations research problems.
In The twelfth International Conference on Learning Representations (ICLR).

[7] AhmadiTeshnizi, A., Gao, W., & Udell, M. (2024, July). OptiMUS: scalable optimization modeling with (MI)LP solvers and large language models.

In Proceedings of the 41st International Conference on Machine Learning (pp. 577-596).

[8] Zhang, J., Xiang, J., Yu, Z., Teng, F., Chen, X., Chen, J., ... & Wu, C. (2025). AFlow: Automating agentic workflow generation. In The Thirteenth
International Conference on Learning Representations (ICLR).

[9] Zhang, J., Wang, W., Guo, S., Wang, L., Lin, F., Yang, C., & Yin, W. (2024, June). Solving General Natural-Language-Description Optimization Problems
with Large Language Models. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies (Volume 6: Industry Track) (pp. 483-490).

[10] Huang, C., Tang, Z., Ge, D., Hu, S., Jiang, R., Wang, B., ... & Zheng, X. (2024). ORLM: A Customizable Framework in Training Large Models for
Automated Optimization Modeling. Accepted by Operations Research.

[11] Amarasinghe, P. T., Nguyen, S., Sun, Y., & Alahakoon, D. (2023). Language Models for Business Optimisation with a Real World Case Study in
Production Scheduling. arXiv preprint arXiv:2309.13218.

[12] Jiang, C., Shu, X., Qian, H., Lu, X., Zhou, J., Zhou, A., & Yu, Y. (2025). LLMOPT: Learning to Define and Solve General Optimization Problems from
Scratch. In The Thirteenth International Conference on Learning Representations (ICLR).

[13] Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z,, Li, Y., Wang, S., ... & Chen, W. (2022). LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations ICLR, 1(2), 3.

[14] Ramamonjison, R., Yu, T, Li, R., Li, H., Carenini, G., Ghaddar, B., ... & Zhang, Y. (2023, August). NL4Opt competition: Formulating optimization
problems based on their natural language descriptions. In NeurlPS 2022 Competition Track (pp. 189-203). PMLR.

[15] Huang, X., Shen, Q., Hu, Y., Gao, A., & Wang, B. (2025, April). LLMs for Mathematical Modeling: Towards Bridging the Gap between Natural and
Mathematical Languages. In Findings of the Association for Computational Linguistics: NAACL 2025(pp. 2678-2710).

[16] Yang, Z., Wang, Y., Huang, Y., Guo, Z., Shi, W., Han, X,, ... & Tang, J. (2025). OptiBench meets ReSocratic: Measure and improve LLMs for optimization
modeling. In The Thirteenth International Conference on Learning Representations (ICLR).

[17] Ramamonjison, R,, Li, H., Yu, T., He, S., Rengan, V., Banitalebi-Dehkordi, A., ... & Zhang, Y. (2022, December). Augmenting Operations Research with
Auto-Formulation of Optimization Models From Problem Descriptions. In Proceedings of the EMNLP: Industry Track (pp. 29-62). 57

Evolutionary Optimization Guided
by Large Models

Huigen Ye
Tsinghua University,
Beijing, P. R. China

Background

* Rapid Progress of Large Models
 LLM capabilities have accelerated rapidly

Complex tasks are now within reach
“Impossible” problems are becoming solvable

A Progress on Al benchmarks in the past five years
100 +
Trivia questions 7l
80 T (TriviaQA) /
O
60T Graduate-level
Accuracy STEM (GPQA)
40 + -
Prestigious math j
exam (AIME)
20 +
2020 2021 2022 2023 2024 2025

(a) Breakthroughs on Al benchmarks from 2020 to 2025 (Y2© etal-, 2025)

59

Background

* How LLMs Enhance Evolutionary Algorithms

* LLMs for optimization solving
e Black-box optimization

e Algorithm generation
* LLMs for repairing infeasible optimization models

LLM-assisted Black-box Optimization
LLM- LLMs for optimization solving

enh;:ced LLM-assisted Optimization Algorithm Generation
LLM Empower EA for Other Capabilities LLMs for instance constraint repair
- EA-based Prompt Engineering
EA ’
Meets enhanced EA-based LLM Architecture Search
LLM
LLM
EA Empower LLM for Other Capabilities
Code Generation
Application
|2:'e\;2 t:)é Software Engineering
Synergy of
|_|_yM ar?g EA Neural Architecture Search

Others Generative Tasks

60
(a) Categorization of research works on the integration of LLMs and Evolutionary Algorithms (EAs)(\Vu et al, 2024)

Background

* How LLMs Enhance Evolutionary Algorithms
* Black-box Optimization
 LLM acts as a solver via dialogue

e Orserves as a search operator
* Easy to use, but limited by context & reasoning
e L Only suitable for small-scale problems

* Algorithm Generation

* LLM generates optimization algorithms

* Algorithms are shorter than full problem inputs
* Leverages LLM's code generation strength

. Scalable to large-scale problems

i LLM-assisted Black-box Optimization Small-scale optimization problem
enhanced
EA
LLM-assisted Optimization Algorithm Generation Large-scale optimization problem

61

(a) Two main LLM-enhanced EA approaches for optimization solving("/v ¢t 2l 2024)

Basic Method

* How EA Combines with LLM to Generate Optimization Code

 Whole-code Evolution
e Directly evolve entire heuristic codes
* Different paradigms may mix (e.g. Genetic Algorithm + Feasibility Pump)
o /L Easy to use, but often unstable due to incompatible structures

* Operator-level Evolution
* Fix a high-quality heuristic framework (e.g. Large Neighborhood Search)
 Use EA + LLM to evolve key operators (e.g. neighborhood selection)
. More stable and effective

T ot € $<

—> —> @—) —>

& .

(a) Evolve the entire heuristic algorithm (b) Evolve a component (eg operator)

Basic Method

* Practical Workflow of EA + LLM for Code Evolution
e Select Target

* Decide which operator to evolve (e.g., neighborhood selection)

* Define its input and output interfaces
* Initialize Population

* Collect existing implementation strategies

* Or generate initial candidates via LLM using interface descriptions
* Parent Selection

* Use standard EA techniques (e.g., tournament, roulette wheel)
 Orlet LLM define custom selection rules

Gate Unit

python
2 — T
def calculate_value_optimized(x, Yy,

z):
pi = 3.16 o
e=2.74 —_— —_— —_ @ﬂ?
g=9.79
coeff_xy = 1.35

exponent = 2.05 - LLM Offspring Fitness
return pi * x**exponent + e * y +

g *z - coeff xy ¥ x*y $

Operator Population

(a) EA + LLM workflow for evolving heuristic operators

Basic Method

* Practical Workflow of EA + LLM for Code Evolution
* Generate Offspring
* Use LLM as a crossover/mutation operator
* Input parent code, output new candidate strategy
e Evaluate and Filter
* Run offspring on tasks to compute fitness

* Gate unit decides whether to keep, replace, or discard based on

performance
* Eventually, you obtain an efficient, evolved operator <& <&

Gate Unit

python
2 — T
def calculate_value_optimized(x, Yy,

z):
pi = 3.16 o
e =2.74 —_— —_— —_— @ﬂ?
g=9.79
coeff_xy = 1.35

exponent = 2.05 - LLM Offspring Fitness
return pi * x**exponent + e * y +

g *z - coeff xy ¥ x*y $

Operator Population

(a) EA + LLM workflow for evolving heuristic operators

Basic Method

* How to Use LLMs as Black-box Optimizers via API

 Key ldea
* We use the LLM as a black-box optimizer
e Just send the parent strategy + prompt to the API
* and extract new offspring code from the response
 Example
* Using the OpenAl API (https://platform.openai.com/docs/overview)

) is

input: "Improve this strategy: [parent_code_here]"
» output: [new evolved code]

Gate Unit OpenAl developer platform

javascript ¢

import OpenAI from "openai";

Developer quickstart const client = new OpenAI();

Make your first APl request in . X
% % k A const response = await client.responses.create({
minutes. Learn the basics of the

model: "apt-4.1",
OpenAl platform. ; ; ;
input: "Write a one-sentence bedtime story about a unichrn.",

. X ® 5min 2
Offspring Fitness

console.log(response.output_text);

&

Population

(a) Parent code + prompt - GPT - New offspring code 65

https://platform.openai.com/docs/overview

Advanced Method

* [Nature] Mathematical discoveries from program search with
|arge |anguage models(Romera-Paredes et al., 2024)
* Ranked Prompting for Evolution * Program Database
 Show 3 programs: A>B>C e Stores all correct programs
« > LLM learns what "better" looks like ~* —> Sampled to build prompts
* lIsland Model

* Independent evolution of subgroups
* = Encourages diversity, avoids local optima

FunSearch

Evaluation

Pretrained LLM | — @

> 7‘ J.nnll&

Specification \ New program
/ ‘] -

‘

Programs
database

(a) FunSearch framework (Romera-Paredes et al., 2024)

Advanced Method

* [ICML2024 Oral] Evolution of Heuristics: Towards Efficient

Automatic Algorithm Design Using Large Language Model-" ¢t
al., 2024)

S 2 Key Innovation: Co-evolution of Code and Thought

 Before-Most prior work (e.g., FunSearch) evolves code only

4 N\
 EOH's Idea-Evolve both: (= || A
- =
@ Natural language description]
("thought"): summarizes the high- , Thoui
level idea Az~ B2
- . . N J J
i = COde: lmp|ement5 the detalls (a) Manual Design (b) Evol. of codes (FunSearch)
e — N A
. eul‘lSthSg
 Benefit »[..
i Prompt Strategies:
* - Thought helps understanding N Y Thousht | 1) Exploraton:
) . LR = a #E1 Fr2
and generallzatlon l, Augment 2) Modification:
¢ - Code offers executable precision KX = MG |
gl | Code ’ ’/

(a) EOH framework(t et 2024)

Advanced Method

* [ICML2024 Oral] Evolution of Heuristics: Towards Efficient
Automatic Algorithm Design Using Large Language Model-" ¢t
al., 2024)

* Prompts’ Key Idea:

 Use LLM as an evolutionary operator with carefully designed prompt
strategies—> Mimic how humans generate new ideas

. Two Categories of Prompts: (———))
* Exploration (E-series) e]
* E1-"Create something new” v
A Thought
e E2-"Same idea, new form” il -
\ J J
* Modification (M-series) (a) Manual Design (b) Evol. of codes (FunSearch)
- — - =
* M1-Improve it et g
.
* M2 - Tune It Prompt Strategies:
. o e . o, ¥ Thought 1) Exploration:
M3 — Simplify it &3 - = o B
l, »A»ug.me.nt‘ 2) Modification:
KanX o i EMEmEw
\ 7 | Code ’.j

(a) EOH framework !\ et !, 2024) -

Advanced Method

* [ICML2025 Spotlight] Large Language Model-driven Large
Neighborhood Search for Large-Scale MILP Problems (Ve et al., 2025)

¢ x Problem in Prior Work (Dual-layer Self-evolution LLM Agent\
* Prompt Strategies are fixed or handcrafted :{E):J;e-r-l.;;e-r:-Ev_oTu-ti-o-n-a;y-l;r:J:r;p-t_S;r;t-e-g;-E\-l;IL;i;r: """ .

| | Population of Prompt i

* Evolution only happens at the strategy level @¢ > ® @

* Leads to: i | i

« & Limited diversity in generated heuristics
. © Easy stagnation in local optima

. Key Innovation
e Dual-layer Self-evolutionary Structure

(a) Dual-layer evolution

Layer What It Evolves Goal

Prompt strategies (how

& Outer Layer LLM evolves) Exploration / Diversity

Heuristic strategies (code Exploitation /

@ inner Layer + thought) Convergence

(b) Functional roles of the two layers in the self-evolutionary LLM agent 69

Advanced Method

* [ICML2025 Spotlight] Large Language Model-driven Large
Neighborhood Search for Large-Scale MILP Problems (Ve et al., 2025)
Problem in Prior Work
 LLMs don’t know which direction to evolve

* Because previous generations only give them:
« X Few examples

« X No clear contrast between good and bad = Evolution is blind and
directionless

. Key Innovation

¢ @ |Inspired by-Large Language Models as Optimizers(Yang etal, 2024)

* LLMs can optimize without gradients just by seeing solution + score pairs and
reasoning over natural language

e Differential Memory for Directional Evolution
* Provide the LLM with:
* Multiple strategies + both their scores and ranks
* Natural language thoughts
e > Soitcan learn from differences and evolve better offspring strategies

Advanced Method

* [ICML2025 Spotlight] Large Language Model-driven Large
Neighborhood Search for Large-Scale MILP Problems (Ve et al., 2025)

Fitness Value(Performance)

Evolution of

* Cross3: Design an advanced algorithm with complexity reduction.
* Cross4: Suggest a new heuristic for better efficiency.

* Variation3: Reconfigure core principles for a new heuristic.

* Variation4: Add stochastic elements and adaptive learning.

Evolution of

* Cross5: Develop a novel heuristic by synthesizing methodologies to reduce the objective function.

* Cross6: Create a heuristic using unique elements and adaptive learning for minimization.

* Variation5: Adjust score function parameters to optimize exploration strategies.

e Variation6: Investigate and redesign heuristics using unconventional techniques for better optimization.

Evolution of Heuristic Strategy

Added power and proximity penalties

¢ scoresbins > itom] = (LT - OO (1 — Pl
0.9918
0.9916 0.9916
0.9911 0.9911

0.9934 0-9%4

Evolution of Heuristic Strategy

¢ Added randomness for exploration

(bins—item) (bins/10)*

. : : _ (bins—item) _ (bins/10)2 _
scores[bins > item] = T

a- M) + randomness x 0.1

max(bins)

©

4 .

0.9942

Ao A ¢

* scores[bins > item] =

max(bins)

Evolution of Heuristic Strategy
* Swarm intelligence + simulated annealing
(bins—item)
bins+1e-5

(1 —binscitemy o g1obal best — scores) x 0.1 + random adjustment

(bins/12)?

X temperature —m =

Management of

« _Variationd-

Add stochastic-el

Initialization of Heuristic Strategy
« Capacity ratio with penalty

Evolution of Heuristic Strategy

Hybrid optimization with genetic algorithm + tabu search
(bins—item)

istiels — history penalty —

scores[bins > item] =

O]

5 . - __ (bins—item) 1 bins/15)? . . _ _ bins—item
scores[bms > ltem] - bins index of bin+0.5 max((bins/15)2) +mutation'variance (1 mux(bins)+1e—5)
Initialization of Evolution of Heuristic Strategy
* Crossl: Create acompletely new algorithm. + Randomized adjustment for diversity
* Cross2: Create anew algorithm inspired by the given ones. — i 2 —
s . g EOr nepy i &Y * scores[bins > item] = (pins-item) M%L -(1—- bins Ltem) + random adjustment
0.9595 e Variationl: Modify the given algorithm. bins+le=5 mqx(2iB%)? max(bins)
. Variation2: Change the parameters of the given algorithm.
5 10 15 20

Number of generations

(a) Evolution of Dual-layer Self-evolutionary LLM Agent for online bin packing (¢ ¢t al. 2025)

71

Performance (objective)

Advanced Method
[ICML2025 Spotlight] Large Language Model-driven Large

Neighborhood Search for Large-Scale MILP Problems (Ve et al., 202

5)

0.995

0.990 A

0.985 A

0.980 A

0.975 A

0.970 A

0.965 -

0.960 -

EOH
LLM-LNS

0.955 -

7.5 10.0 12.5
Number of generations

15.0 17.5

(a) Evolutionary Progress of Heuristic Strategies in
Online Bin Packing

20.0

Heuristic Designed by Dual-layer Self-evolution LLM Agent

Description

The new algorithm employs a hybrid optimization strategy that combines nonlinear penalties for histori-
cal usage, adaptive capacity scaling, and a relative size assessment, facilitating a balance between local
and global search for optimal bin assignment.

Code

import numpy as np
def score(item, bins):
feasible_bins = bins[bins > item]
scores = np.zeros_like (bins)
if len(feasible_bins)
return scores

remaining_capacity = feasible_bins - item
capacity_scaling = np.loglp(remaining_capacity) = (
remaining_capacity / np.max(remaining_capacity))

relative_size_effect = (item *x 2 / feasible_bins) =* 50

historical_count = np.arange(len (feasible_bins)) + 1

penalty_factor = np.power (1.5, historical_count)

scores[bins > item] = capacity_scaling - relative_size_effect -
penalty_factor

return scores

N

(b) Heuristic Designed by Dual-layer Self-evolution LLM Agent

Future Directions

* Multimodal Optimization with LLMs

* Combine problem modeling and solution generation using multimodal
inputs (e.g., text + code)

* Enable end-to-end optimization pipelines via LLMs' multimodal
understanding

* Improving Diversity and Generalization

* Introduce continual learning mutation operators to adapt to changing
problem spaces

 Use performance-based feedback to evolve more effective mutation
strategies

 Modular Code Generation for Complex Logic

* Decompose complex logic into modular sub-tasks for better generation

* Use interactive interfaces to guide LLMs and EAs in coordinated code
generation

References

*(Yao et al., 2025) Yao S, Wei J. The Second Half[EB/OL]. https://ysymyth.github.io/The-Second-Half/, accessed May 2, 2025.

*(Wu et al., 2024) Wu X, Wu S, Wu J, et al. Evolutionary computation in the era of large language model: Survey and roadmap[J]. IEEE
Transactions on Evolutionary Computation, 2024.

*(Romera-Paredes et al., 2024) Romera-Paredes B, Barekatain M, Novikov A, et al. Mathematical discoveries from program search with
large language models[J]. Nature, 2024, 625(7995): 468-475.

*(Liu et al., 2024) Liu F, Xialiang T, Yuan M, et al. Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using Large
Language Model[C]. International Conference on Machine Learning. PMLR, 2024: 32201-32223.

*(Ye et al., 2025) Ye H, Xu H, Yan A, et al. Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems[C].
International Conference on Machine Learning. 2025.

*(Yang et al., 2024) Yang C, Wang X, Lu Y, et al. Large Language Models as Optimizers[C]. The Twelfth International Conference on
Learning Representations. 2024.

74

Thanks

Any question?

GEEEE

