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Background
• Several Optimization Cases

• 3D IC Partitioning Problem(Meitei et al., 2020) 

• Pickup and Delivery Problem with Time Windows(Dumas et al., 1991)

• Supply Chain Management Problem(Villa, 2001) 

• Problem Definition
• Definition:
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(a) IC Partitioning Problem (b) Pickup and Delivery Problem (c) Supply Chain Management



Background
• Traditional Mathematical and Exact Methods

• Exact Methods:
• Solver: SCIP(Achterberg, 2009), IPOPT(Biegler et al. 2009), 

Gurobi(Pedroso 2011), CPLEX(Bliek1ú et al., 2014)

• Academic Progress: Advanced Branch-and-Bound 
Techniques(Morrison et al., 2016)，Cutting Plane Methods(Dey 
et al., 2018)  

• Heuristics Method
• Large Neighborhood Search(LNS)(Song et al., 2020) 

• Adaptive Constraint Partition(Ye et al., 2023) 

• Traditional ML-based Method(Liu et al., 2023)

• Challenges
• Exact Methods: Scalability Issues & Exponential Complexity
• Heuristics Method: Careful Parameter Tuning & Cold Start 

Issues
• Traditional ML-based Method: High sample collection or 

training costs (b) Evolution Optimization Method

(a) Branch-and-Bound Techniques



Background
• Rapid Progress of Large Models

• LLM capabilities have accelerated rapidly
• Complex tasks are now within reach
• “Impossible” problems are becoming solvable
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(a) Breakthroughs on AI benchmarks from 2020 to 2025(Yao et al., 2025) 



Background

5(a) Categorization of research works on the integration of LLMs and Evolutionary Algorithms (EAs)(Wu et al., 2024) 

✅ LLMs for optimization solving

LLMs for instance constraint repair

• How LLMs Enhance Evolutionary Algorithms
• LLMs for optimization solving

• Black-box optimization
• Algorithm generation

• LLMs for repairing infeasible optimization models



Background
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• How LLMs Enhance Evolutionary Algorithms
• Black-box Optimization

• LLM acts as a solver via dialogue
• Or serves as a search operator
• Easy to use, but limited by context & reasoning
• ⚠ Only suitable for small-scale problems

• Algorithm Generation

• LLM generates optimization algorithms
• Algorithms are shorter than full problem inputs
• Leverages LLM's code generation strength
• ✅ Scalable to large-scale problems

(a) Two main LLM-enhanced EA approaches for optimization solving(Wu et al., 2024) 

Small-scale optimization problem

✅ Large-scale optimization problem



Basic Method
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• How EA Combines with LLM to Generate Optimization Code
• Whole-code Evolution

• Directly evolve entire heuristic codes
• Different paradigms may mix (e.g. Genetic Algorithm + Feasibility Pump)
• Easy to use, but limited by context & reasoning
• ⚠ Often unstable due to incompatible structures

• Operator-level Evolution
• Fix a high-quality heuristic framework (e.g. Large Neighborhood Search)
• Use EA + LLM to evolve key operators (e.g. neighborhood selection)
• ✅ More stable and effective

(a) Evolve the entire heuristic algorithm (b) Evolve a component (e.g. operator)



Basic Method
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• Practical Workflow of EA + LLM for Code Evolution
• Select Target

• Decide which operator to evolve (e.g., neighborhood selection)
• Define its input and output interfaces

• Initialize Population
• Collect existing implementation strategies
• Or generate initial candidates via LLM using interface descriptions

• Parent Selection
• Use standard EA techniques (e.g., tournament, roulette wheel)
• Or let LLM define custom selection rules

Population

LLM Offspring Fitness

Gate Unit

Operator
(a) EA + LLM workflow for evolving heuristic operators



Basic Method
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• Practical Workflow of EA + LLM for Code Evolution
• Generate Offspring

• Use LLM as a crossover/mutation operator
• Input parent code, output new candidate strategy

• Evaluate and Filter
• Run offspring on tasks to compute fitness
• Gate unit decides whether to keep, replace, or discard based on performance

• Eventually, you obtain an efficient, evolved operator 🥳🥳

Popula6on

LLM Offspring Fitness

Gate Unit

Operator
(a) EA + LLM workflow for evolving heuristic operators



Basic Method
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• How to Use LLMs as Black-box Optimizers via API
• Key Idea

• We use the LLM as a black-box optimizer
• Just send the parent strategy + prompt to the API
• and extract new offspring code from the response 

• Example
• Using the OpenAI API (https://platform.openai.com/docs/overview)
•

Popula6on

Offspring Fitness

Gate Unit

(a) Parent code + prompt → GPT → New offspring code

https://platform.openai.com/docs/overview


Advanced Method
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• [Nature] Mathematical discoveries from program search with 
large language models(Romera-Paredes et al., 2024) 

• Ranked Prompting for Evolution
• Show 3 programs: A > B > C
• → LLM learns what "better" looks like

• Island Model
• Independent evolution of subgroups
• → Encourages diversity, avoids local optima

(a) FunSearch framework[3]

(b) Evolutionary Method with Island Model(Romera-Paredes et al., 2024) 



Advanced Method
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• [ICML2024 Oral] Evolution of Heuristics: Towards Efficient 
Automatic Algorithm Design Using Large Language Model
(Liu et al., 2024) 

• 🚀 Key Innovation: Co-evolution of Code and Thought

• Before-Most prior work (e.g., FunSearch) evolves code only

• EOH's Idea-Evolve both:

• 🧠 Natural language description ("thought"): 
summarizes the high-level idea

• 💻 Code: implements the details

• Benefit

• → Thought helps understanding and 
generalization

• → Code offers executable precision

(a) EOH framework(Liu et al., 2024) 



Advanced Method
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• [ICML2024 Oral] Evolution of Heuristics: Towards Efficient 
Automatic Algorithm Design Using Large Language Model
(Liu et al., 2024) 

• Prompts’ Key Idea:
• Use LLM as an evolutionary operator with carefully designed prompt 

strategies→ Mimic how humans generate new ideas
• ✨ Two Categories of Prompts:

• Exploration (E-series)
• E1 – "Create something new”
• E2 – "Same idea, new form”

• Modification (M-series)
• M1 – Improve it
• M2 – Tune it
• M3 – Simplify it

(a) EOH framework(Liu et al., 2024) 



Advanced Method
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• [ICML2025 Spotlight] Large Language Model-driven Large 
Neighborhood Search for Large-Scale MILP Problems(Ye et al., 2025) 

• ❌ Problem in Prior Work
• Prompt strategies are fixed or handcrafted
• Evolution only happens at the strategy level
• Leads to:

• 🧬 Limited diversity in generated heuristics
• 🌀 Easy stagnation in local optima

• ✅ Key Innovation
• Dual-layer Self-evolutionary Structure (a) Dual-layer evoluRon

Layer What It Evolves Goal

🟠 Outer Layer Prompt strategies (how LLM evolves) Exploration / Diversity

🔵 Inner Layer Heuristic strategies (code + thought) Exploitation / Convergence

(b) Functional roles of the two layers in the self-evolutionary LLM agent



Advanced Method
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• [ICML2025 Spotlight] Large Language Model-driven Large 
Neighborhood Search for Large-Scale MILP Problems (Ye et al., 2025) 

• ❌ Problem in Prior Work
• LLMs don’t know which direction to evolve
• Because previous generations only give them:

• ✖ Few examples
• ✖ No clear contrast between good and bad → Evolution is blind and directionless

• ✅ Key Innovation
• 🧠 Inspired by-Large Language Models as Optimizers(Yang et al., 2024) 

• LLMs can optimize without gradients just by seeing solution + score pairs and reasoning 
over natural language

• Differential Memory for Directional Evolution
• Provide the LLM with:

• Multiple strategies + both their scores and ranks
• Natural language thoughts

• → So it can learn from differences and evolve better offspring strategies



Advanced Method
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• [ICML2025 Spotlight] Large Language Model-driven Large 
Neighborhood Search for Large-Scale MILP Problems (Ye et al., 2025) 

(a) EvoluRon of Dual-layer Self-evoluRonary LLM Agent for online bin packing (Ye et al., 

2025) 



Advanced Method

17

• [ICML2025 Spotlight] Large Language Model-driven Large 
Neighborhood Search for Large-Scale MILP Problems (Ye et al., 2025) 

(a) EvoluRonary Progress of HeurisRc 
Strategies in Online Bin Packing

(b) Heuristic Designed by Dual-layer Self-evolution LLM Agent



18

Advanced Method
• [ICML2025 Spotlight] Large Language Model-driven Large 

Neighborhood Search for Large-Scale MILP Problems (Ye et al., 2025) 



LLM-LNS achieves the best objective value on ALL tested large-
scale instances, outperforming all baselines.

Advanced Method
• [ICML2025 Spotlight] Large Language Model-driven Large 

Neighborhood Search for Large-Scale MILP Problems (Ye et al., 2025) 



Advanced Method
• [ICML2025 Spotlight] Large Language Model-driven Large 

Neighborhood Search for Large-Scale MILP Problems (Ye et al., 2025) 



Future Directions
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• MulCmodal OpCmizaCon with LLMs
• Combine problem modeling and solu1on genera1on using mul1modal inputs 

(e.g., text + code)
• Enable end-to-end op1miza1on pipelines via LLMs' mul1modal understanding

• Improving Diversity and GeneralizaCon
• Introduce con1nual learning muta1on operators to adapt to changing problem 

spaces
• Use performance-based feedback to evolve more effec1ve muta1on strategies

• Modular Code GeneraCon for Complex Logic
• Decompose complex logic into modular sub-tasks for beHer genera1on
• Use interac1ve interfaces to guide LLMs and EAs in coordinated code genera1on
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