

大模型驱动的优化

以 MILP 问题为例

Huigen Ye

Department of Computer Science&Technology, Tsinghua University

Workshop at LEAD2025, China, September, 2025

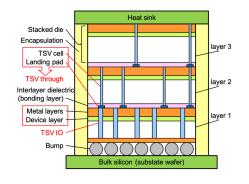
Several Optimization Cases

- 3D IC Partitioning Problem (Meitei et al., 2020)
- Pickup and Delivery Problem with Time Windows(Dumas et al., 1991)
- Supply Chain Management Problem^(Villa, 2001)

Problem Definition

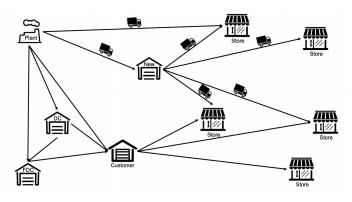
Definition:

$$\min_{x} c^{T} x,$$
subject to $Ax < b, I < x < u, x \in \mathbb{Z}^{n}$. (1)



(a) IC Partitioning Problem

(b) Pickup and Delivery Problem



(c) Supply Chain Management

Traditional Mathematical and Exact Methods

Exact Methods:

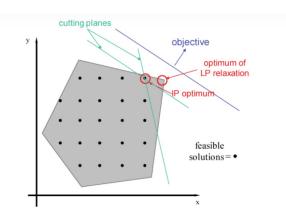
- Solver: SCIP(Achterberg, 2009), IPOPT(Biegler et al. 2009), Gurobi(Pedroso 2011), CPLEX(Bliek1ú et al., 2014)
- Academic Progress: Advanced Branch-and-Bound Techniques (Morrison et al., 2016), Cutting Plane Methods (Dey et al., 2018)

Heuristics Method

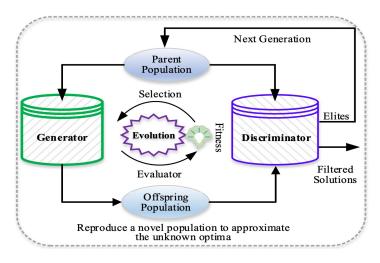
- Large Neighborhood Search(LNS)(Song et al., 2020)
- Adaptive Constraint Partition(Ye et al., 2023)
- Traditional ML-based Method(Liu et al., 2023)

Challenges

- Exact Methods: Scalability Issues & Exponential Complexity
- Heuristics Method: Careful Parameter Tuning & Cold Start Issues
- Traditional ML-based Method: High sample collection or training costs

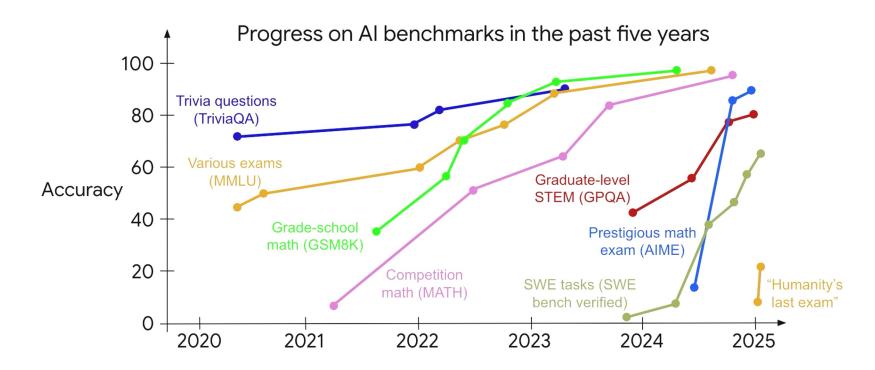


(a) Branch-and-Bound Techniques



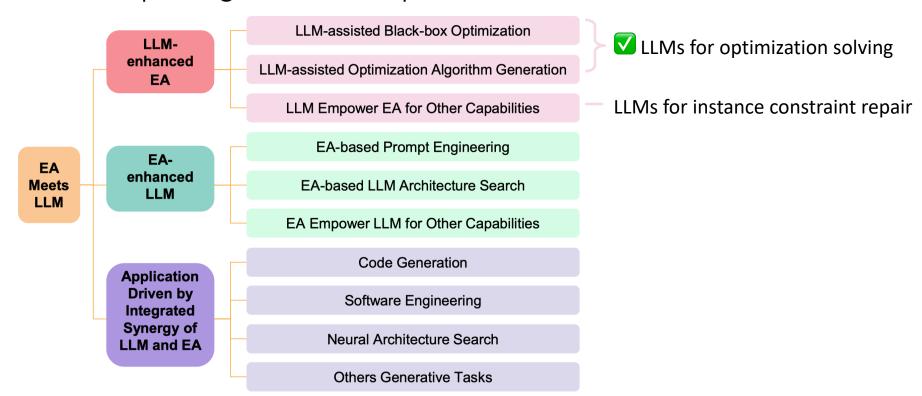
(b) Evolution Optimization Method

- Rapid Progress of Large Models
 - LLM capabilities have accelerated rapidly
 - Complex tasks are now within reach
 - "Impossible" problems are becoming solvable



(a) Breakthroughs on AI benchmarks from 2020 to 2025(Yao et al., 2025)

- How LLMs Enhance Evolutionary Algorithms
 - LLMs for optimization solving
 - Black-box optimization
 - Algorithm generation
 - LLMs for repairing infeasible optimization models



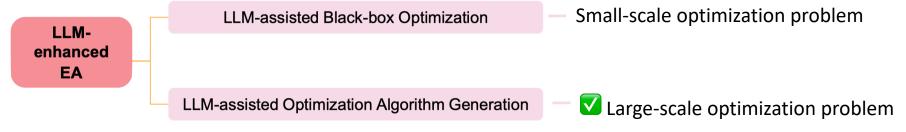
LEAD 2025

How LLMs Enhance Evolutionary Algorithms

- Black-box Optimization
 - LLM acts as a solver via dialogue
 - Or serves as a search operator
 - Easy to use, but limited by context & reasoning
 - A Only suitable for small-scale problems

Algorithm Generation

- LLM generates optimization algorithms
- Algorithms are shorter than full problem inputs
- Leverages LLM's code generation strength
- ✓ Scalable to large-scale problems



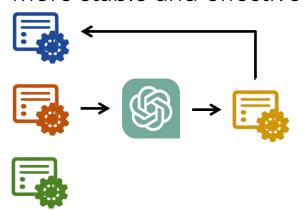
How EA Combines with LLM to Generate Optimization Code

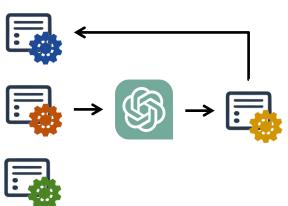
Whole-code Evolution

- Directly evolve entire heuristic codes
- Different paradigms may mix (e.g. Genetic Algorithm + Feasibility Pump)
- Easy to use, but limited by context & reasoning
- Often unstable due to incompatible structures

Operator-level Evolution

- Fix a high-quality heuristic framework (e.g. Large Neighborhood Search)
- Use EA + LLM to evolve key operators (e.g. neighborhood selection)
- More stable and effective





(b) Evolve a component (e.g. operator)

LEAD 2025

Practical Workflow of EA + LLM for Code Evolution

- Select Target
 - Decide which operator to evolve (e.g., neighborhood selection)
 - Define its input and output interfaces
- Initialize Population
 - Collect existing implementation strategies
 - Or generate initial candidates via LLM using interface descriptions

Parent Selection

Use standard EA techniques (e.g., tournament, roulette wheel)

Or let LLM define custom selection rules

python

def calculate_value_optimized(x, y, z):

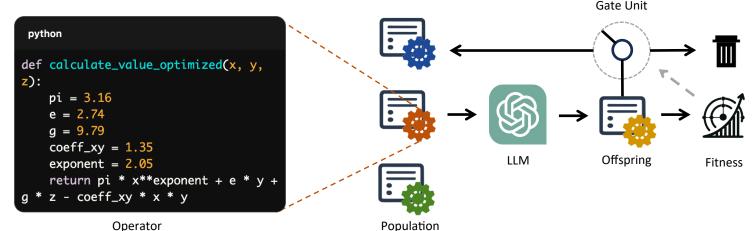
pi = 3.16
 e = 2.74
 g = 9.79
 coeff_xy = 1.35
 exponent = 2.05
 return pi * x**exponent + e * y + g * z - coeff_xy * x * y

Gate Unit

Offspring

Fitness

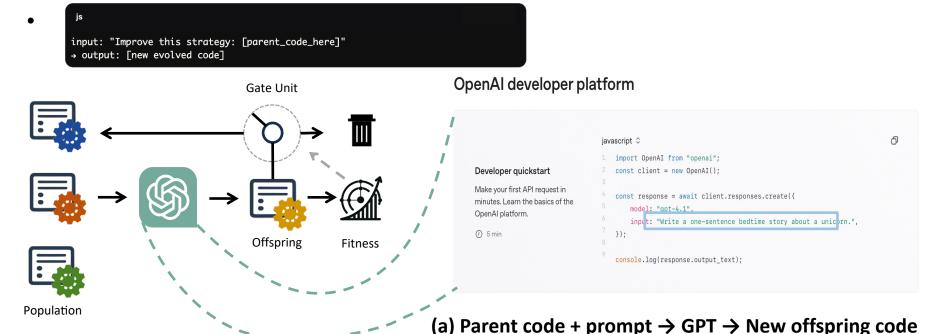
- Practical Workflow of EA + LLM for Code Evolution
 - **Generate Offspring**
 - Use LLM as a crossover/mutation operator
 - Input parent code, output new candidate strategy
 - **Evaluate and Filter**
 - Run offspring on tasks to compute fitness
 - Gate unit decides whether to keep, replace, or discard based on performance
 - Eventually, you obtain an efficient, evolved operator 🥯 🤴



- How to Use LLMs as Black-box Optimizers via API
 - Key Idea
 - We use the LLM as a black-box optimizer
 - Just send the parent strategy + prompt to the API
 - and extract new offspring code from the response

Example

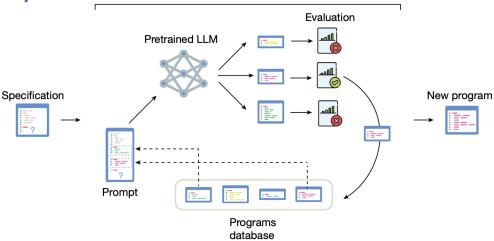
Using the OpenAl API (https://platform.openai.com/docs/overview)



[Nature] Mathematical discoveries from program search with

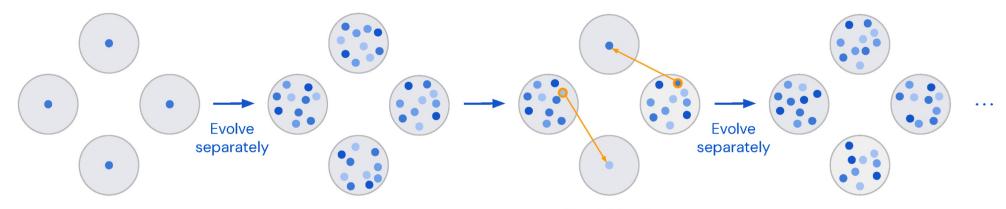
large language models(Romera-Paredes et al., 2024)

- Ranked Prompting for Evolution
 - Show 3 programs: A > B > C
 - → LLM learns what "better" looks like
- Island Model
 - Independent evolution of subgroups
 - → Encourages diversity, avoids local optima



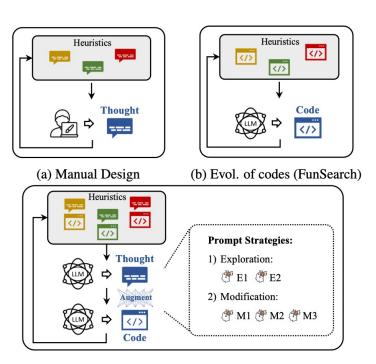
FunSearch

(a) FunSearch framework^[3]



Reset islands

- [ICML2024 Oral] Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using Large Language Model (Liu et al., 2024)
 - Key Innovation: Co-evolution of Code and Thought
 - Before-Most prior work (e.g., FunSearch) evolves code only
 - EOH's Idea-Evolve both:
 - Natural language description ("thought"): summarizes the high-level idea
 - Code: implements the details
 - Benefit
 - → Thought helps understanding and generalization
 - → Code offers executable precision



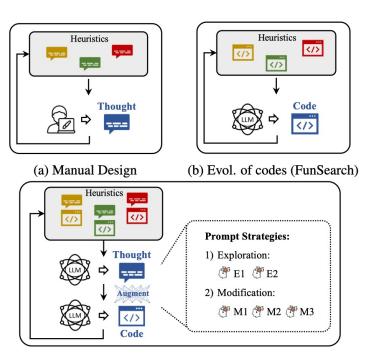
 [ICML2024 Oral] Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using Large Language Model (Liu et al., 2024)

Prompts' Key Idea:

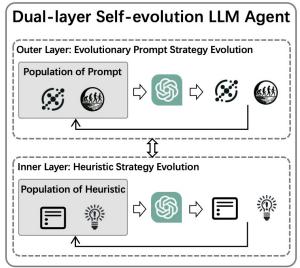
 Use LLM as an evolutionary operator with carefully designed prompt strategies → Mimic how humans generate new ideas

Two Categories of Prompts:

- Exploration (E-series)
 - E1 "Create something new"
 - E2 "Same idea, new form"
- Modification (M-series)
 - M1 Improve it
 - M2 Tune it
 - M3 Simplify it



- LEAD 2025
- [ICML2025 Spotlight] Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems^(Ye et al., 2025)
 - X Problem in Prior Work
 - Prompt strategies are fixed or handcrafted
 - Evolution only happens at the strategy level
 - Leads to:
 - Solution Limited diversity in generated heuristics
 - 6 Easy stagnation in local optima
 - Key Innovation
 - Dual-layer Self-evolutionary Structure



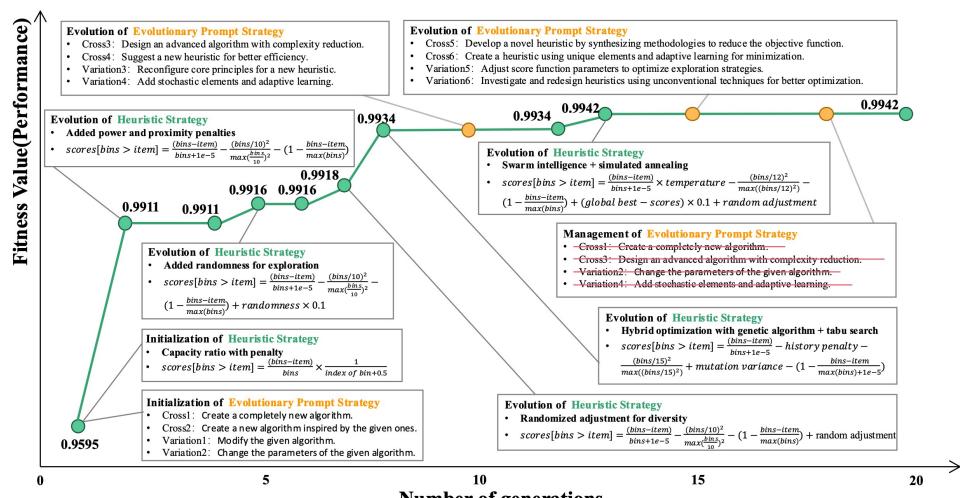
(a) Dual-layer evolution

Layer	What It Evolves	Goal
Outer Layer	Prompt strategies (how LLM evolves)	Exploration / Diversity
Inner Layer	Heuristic strategies (code + thought)	Exploitation / Convergence

- [ICML2025 Spotlight] Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems (Ye et al., 2025)
 - X Problem in Prior Work
 - LLMs don't know which direction to evolve
 - Because previous generations only give them:
 - Few examples
 - No clear contrast between good and bad → Evolution is blind and directionless
 - Key Innovation
 - Inspired by-Large Language Models as Optimizers(Yang et al., 2024)
 - LLMs can optimize without gradients just by seeing solution + score pairs and reasoning over natural language
 - Differential Memory for Directional Evolution
 - Provide the LLM with:
 - Multiple strategies + both their scores and ranks
 - Natural language thoughts
 - → So it can learn from differences and evolve better offspring strategies

1EAD 2025

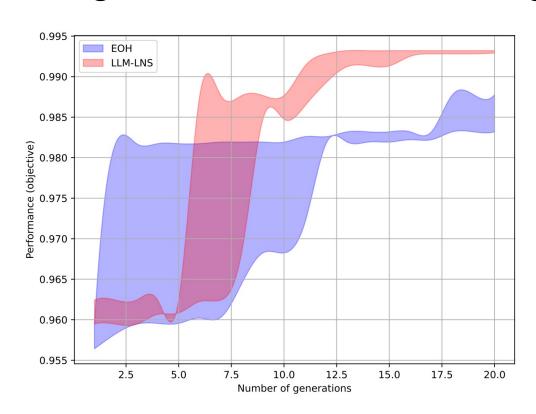
 [ICML2025 Spotlight] Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems (Ye et al., 2025)



(a) Evolution of Dual-layer Self-evolutionary LLM Agent for online bin packing (Ye et al.,

LEAD 2025

• [ICML2025 Spotlight] Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems (Ye et al., 2025)



(a) Evolutionary Progress of Heuristic Strategies in Online Bin Packing

Heuristic Designed by Dual-layer Self-evolution LLM Agent

Description

The new algorithm employs a hybrid optimization strategy that combines nonlinear penalties for historical usage, adaptive capacity scaling, and a relative size assessment, facilitating a balance between local and global search for optimal bin assignment.

Code

```
import numpy as np
def score(item, bins):
    feasible_bins = bins[bins > item]
    scores = np.zeros_like(bins)
    if len(feasible bins) == 0:
        return scores
    # Nonlinear capacity scaling that enhances the desire for larger
    remaining_capacity = feasible_bins - item
    capacity_scaling = np.log1p(remaining_capacity) * (
       remaining capacity / np.max(remaining capacity))
    # Relative size assessment: quadratic term comparing item size with
        bin capacities
    relative size effect = (item ** 2 / feasible bins) * 50 # Scale to
        moderate impact
    # Nonlinear penalty based on historical usage counts to deter
       overutilization
    historical_count = np.arange(len(feasible_bins)) + 1  # Simulating
       historical usage
    penalty_factor = np.power(1.5, historical_count) # Exponential
       penalty for higher usage
    # Combining scores: enhanced capacity scaling, moderated size
       assessment, and historical penalties
    scores[bins > item] = capacity_scaling - relative_size_effect -
       penalty_factor
    return scores
```


14: return x

 [ICML2025 Spotlight] Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems (Ye et al., 2025)

Algorithm 2 Adaptive Large Neighborhood Search (ALNS)

```
Require: Initial solution \mathbf{x}_0, initial neighborhood size k, time limit T, threshold \epsilon, iteration limit p, minimum and maximum neighborhood
    sizes k_{\min}, k_{\max}, decision variable count n, adjustment rate u\% (percentage) –
 1: Initialize solution \mathbf{x} \leftarrow \mathbf{x}_0, set time t \leftarrow 0
 2: while t < T do
        Compute variable scores s_i using the LLM agent
 3:
         Select top-k variables to form neighborhood \mathcal{N}
 4:
         Solve subproblem within N using a solver
         Update solution x if an improvement is found
         if time spent in neighborhood exceeds predefined limit then
             k \leftarrow \max(k_{\min}, k - \lceil u\% \cdot n \rceil)
9:
         else if improvement in objective value < \epsilon for p consecutive iterations then
             k \leftarrow \min(k_{\max}, k + \lceil u\% \cdot n \rceil)
11:
         end if
         Update time t
    end while
```

```
Heuristic (Obj Score: 5373.34904)
Develop a co-evolutionary heuristic approach that integrates genetic algorithms with local
search techniques to enhance convergence speed and minimize the objective function for the
specified problem.
Code
import numpy as np
def select_neighborhood(n, m, k, site, value, constraint,
      initial_solution, current_solution, objective_coefficient):
    neighbor_score = np.zeros(n)
    for i in range(m):
        lhs = sum(value[i][j] * current_solution[site[i][j]] for
               i in range(k[i]))
        for j in range(k[i]):
             var_index = site[i][j]
             difference = np.abs(current_solution[var_index] -
                   initial_solution[var_index])
             neighbor_score[var_index] += (constraint[i] - lhs) *
                   difference
    random_adjustment = np.random.rand(n)
    adaptive_mutation_rate = np.clip(np.abs(objective_coefficient
          ), 0.1, 1.0)
    neighbor_score += adaptive_mutation_rate * random_adjustment
    return neighbor_score
```

LEAD 2025

[ICML2025 Spotlight] Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems (Ye et al., 2025)

Table 4. Comparison of objective values on large-scale MILP instances across different methods. For each instance, the best-performing objective value is highlighted in bold. The - symbol indicates that the method was unable to generate samples for any instance within 30,000 seconds, while * indicates that the GNN&GBDT framework could not solve the MILP problem.

,							1	
	SC ₁ (Min)	SC ₂ (Min)	MVC ₁ (Min)	MVC ₂ (Min)	$MIS_1(Max)$	MIS ₂ (Max)	$MIKS_1(Max)$	MIKS ₂ (Max)
Random-LNS	16140.6	169417.5	27031.4	276467.5	22892.9	223748.6	36011.0	351964.2
ACP	17672.1	182359.4	26877.2	274013.3	23058.0	226498.2	34190.8	332235.6
CL-LNS	-	-	31285.0	-	15000.0	-	-	-
Gurobi	17934.5	320240.4	28151.3	283555.8	21789.0	216591.3	32960.0	329642.4
SCIP	25191.2	385708.4	31275.4	491042.9	18649.9	9104.3	29974.7	168289.9
GNN&GBDT	16728.8	252797.2	27107.9	271777.2	22795.7	227006.4	*	*
Light-MILPOPT	16108.1	160015.5	26950.7	269571.5	22966.5	230432.9	36125.5	362265.1
LLM-LNS(Ours)	15802.7	158878.9	26725.3	268033.7	23169.3	231636.9	36479.8	363749.5

LLM-LNS achieves the best objective value on ALL tested largescale instances, outperforming all baselines.

Table 7. Comparison of objective values on large-scale MILP instances across different methods using SCIP as optimizer. For each instance, the best-performing objective value is highlighted in bold. The - symbol indicates that the method was unable to generate samples for any instance within 30,000 seconds, while * indicates that the GNN&GBDT framework could not solve the MILP problem.

	SC_1	SC_2	MVC_1	MVC_2	${ m MIS_1}$	MIS_2	$MIKS_1$	$MIKS_2$
Random-LNS	16164.2	171655.6	27049.6	277255.3	22892.9	222076.8	691.7	6870.1
ACP	17743.4	192791.2	27432.9	281862.4	23058.0	216008.8	29879.2	7913.5
CL-LNS	-	-	31285.0	-	15000.0	-	-	-
Gurobi	17934.5	320240.4	28151.3	283555.8	21789.0	216591.3	32960.0	329642.4
SCIP	25191.2	385708.4	31275.4	491042.9	18649.9	9104.3	29974.7	168289.9
GNN&GBDT	16728.8	261174.0	27107.9	271777.2	22795.7	227006.4	*	*
Light-MILPOPT	16147.2	166756.0	26956.8	269771.3	22963.6	230278.1	36125.5	357483.8
LLM-LNS(Ours)	15950.2	161732.8	26763.4	268825.5	23137.19	230682.8	36147.7	350468.7

LEAD 2025

 [ICML2025 Spotlight] Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems (Ye et al., 2025)

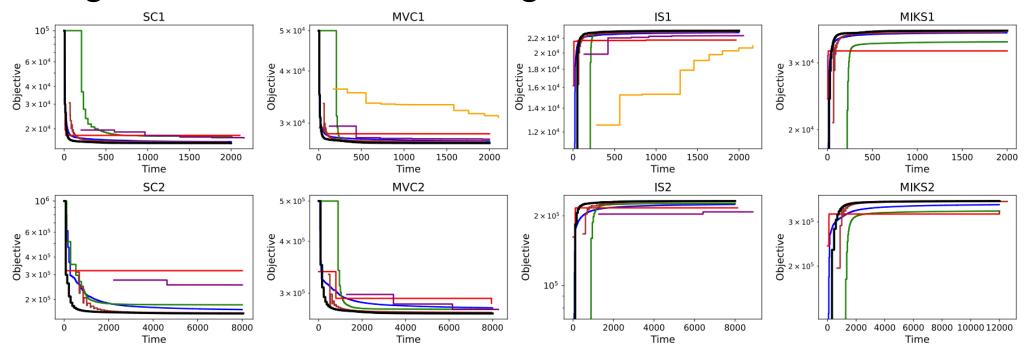


Table 5. Comparison of primal integral on large-scale MILP instances across different methods. For each instance, the best-performing primal integral is highlighted in bold.

0 1								
	$SC_1(Min)$	$SC_2(Min)$	$MVC_1(Min)$	$MVC_2(Min)$	$MIS_1(Max)$	$MIS_2(Max)$	$MIKS_1(Max)$	MIKS ₂ (Max)
Random-LNS	3.41e+07	1.61e+09	5.50e+07	2.29e+09	4.47e+07	1.73e+09	7.08e+07	4.06e+09
ACP	5.43e+07	1.71e+09	5.90e+07	2.41e+09	4.11e+07	1.60e+09	6.02e+07	3.50e+09
CL-LNS	-	-	7.31e+07	-	3.17e+07	-	-	-
Gurobi	3.81e+07	2.65e+09	5.69e+07	2.36e+09	4.25e+07	1.75e+09	6.45e+07	3.86e+09
SCIP	5.18e+07	6.33e+09	6.39e+07	3.92e+09	3.34e+07	7.26e + 07	5.77e+07	7.03e+08
GNN&GBDT	5.52e+07	3.75e+09	5.85e+07	2.55e+09	4.00e+07	1.40e+09	*	*
Light-MILPOPT	3.73e+07	1.80e+09	5.44e+07	2.27e+09	4.30e+07	1.70e+09	6.78e+07	4.03e+09
LLM-LNS(Ours)	3.27e+07	1.38e+09	5.42e+07	2.19e+09	4.48e+07	1.81e+09	7.17e+07	4.18e+09

Future Directions

Multimodal Optimization with LLMs

- Combine problem modeling and solution generation using multimodal inputs (e.g., text + code)
- Enable end-to-end optimization pipelines via LLMs' multimodal understanding

Improving Diversity and Generalization

- Introduce continual learning mutation operators to adapt to changing problem spaces
- Use performance-based feedback to evolve more effective mutation strategies

Modular Code Generation for Complex Logic

- Decompose complex logic into modular sub-tasks for better generation
- Use interactive interfaces to guide LLMs and EAs in coordinated code generation

References

- **Meitei et al., 2020)** Meitei N Y, Baishnab K L, Trivedi G. 3D-IC partitioning method based on genetic algorithm[J]. IET Circuits, Devices & Systems, 2020, 14(7): 1104-1109.
- (Dumas et al., 1991) Dumas Y, Desrosiers J, Soumis F. The pickup and delivery problem with time windows[J]. European journal of operational research, 1991, 54(1): 7-22.
- (Villa, 2001) Villa A. Introducing some supply chain management problems[J]. International Journal of Production Economics, 2001, 73(1): 1-4.
- (Achterberg, 2009) Achterberg T. SCIP: solving constraint integer programs[J]. Mathematical Programming Computation, 2009, 1: 1-41.
- (Biegler et al., 2009) Biegler L T, Zavala V M. Large-scale nonlinear programming using IPOPT: An integrating framework for enterprise-wide dynamic optimization[J]. Computers & Chemical Engineering, 2009, 33(3): 575-582.
- (Pedroso, 2011) Pedroso J P. Optimization with gurobi and python[J]. INESC Porto and Universidade do Porto, Porto, Portugal, 2011, 1.
- (Bliek1ú et al., 2014) Bliek1ú C, Bonami P, Lodi A. Solving mixed-integer quadratic programming problems with IBM-CPLEX: a progress report[C]. Proceedings of the twenty-sixth RAMP symposium. 2014: 16-17.
- (Morrison et al., 2016) Morrison D R, Jacobson S H, Sauppe J J, et al. Branch-and-bound algorithms: A survey of recent advances in searching, branching, and pruning[J]. Discrete Optimization, 2016, 19: 79-102.
- (Dey et al., 2018) Dey S.S., Molinaro M. Theoretical challenges towards cutting-plane selection[J]. Mathematical Programming, 2018, 170: 237-266.
- (Song et al., 2020) Song J, Yue Y, Dilkina B. A general large neighborhood search framework for solving integer linear programs[J]. Advances in Neural Information Processing Systems, 2020, 33: 20012-20023.
- **(Ye et al., 2023)** Ye H, Wang H, Xu H, et al. Adaptive constraint partition based optimization framework for large-scale integer linear programming (student abstract)[C]. Proceedings of the AAAI Conference on Artificial Intelligence. 2023, 37(13): 16376-16377.
- (Liu et al., 2023) Liu S, Lin Q, Li J, et al. A survey on learnable evolutionary algorithms for scalable multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(6): 1941-1961.
- (Yao et al., 2025) Yao S, Wei J. The Second Half[EB/OL]. https://ysymyth.github.io/The-Second-Half/, accessed May 2, 2025.
- (Wu et al., 2024) Wu X, Wu S, Wu J, et al. Evolutionary computation in the era of large language model: Survey and roadmap[J]. IEEE Transactions on Evolutionary Computation, 2024.
- (Romera-Paredes et al., 2024) Romera-Paredes B, Barekatain M, Novikov A, et al. Mathematical discoveries from program search with large language models[J]. Nature, 2024, 625(7995): 468-475.
- (Liu et al., 2024) Liu F, Xialiang T, Yuan M, et al. Evolution of Heuristics: Towards Efficient Automatic Algorithm Design Using Large Language Model[C]. International Conference on Machine Learning. PMLR, 2024: 32201-32223.
- (Ye et al., 2025) Ye H, Xu H, Yan A, et al. Large Language Model-driven Large Neighborhood Search for Large-Scale MILP Problems[C]. International Conference on Machine Learning. 2025.
- (Yang et al., 2024) Yang C, Wang X, Lu Y, et al. Large Language Models as Optimizers[C]. The Twelfth International Conference on Learning Representations. 2024.